Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representations of semigroups and the translational hull of a regular Rees matrix semigroup


Author: Mario Petrich
Journal: Trans. Amer. Math. Soc. 143 (1969), 303-318
MSC: Primary 20.90
DOI: https://doi.org/10.1090/S0002-9947-1969-0246984-3
MathSciNet review: 0246984
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. I. Arbib (editor), Algebraic theory of machines, languages, and semigroups, Academic Press, New York, 1968. MR 0232875 (38:1198)
  • [2] I. E. Burmistrovich, Commutative bands of semigroups, Sibirsk. Mat. Ž. 6 (1965), 284-299. (Russian) MR 0173719 (30:3929)
  • [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., 1961. MR 0132791 (24:A2627)
  • [4] L. M. Gluskin, Semigroups and rings of endomorphisms of linear spaces, Izv. Akad. Nauk SSSR 23 (1959), 841-870; Amer. Math. Soc. Transl. (2) 45 (1965), 105-137. MR 0143833 (26:1383)
  • [5] -, Ideals of semigroups, Mat. Sb. 55 (1961), 421-448. (Russian) MR 0139675 (25:3106)
  • [6] P. A. Grillet and Mario Petrich, Ideal extensions of semigroups, Pacific J. Math. 26 (1968), 493-508. MR 0237686 (38:5967)
  • [7] Gérard Lallement and Mario Petrich, Irreducible representations of finite semigroups, Trans. Amer. Math. Soc. 139 (1969), 393-412. MR 0242973 (39:4300)
  • [8] D. D. Miller and A. H. Clifford, Regular $ \mathcal{D}$-classes in semigroups, Trans. Amer. Math. Soc. 82 (1956), 270-280. MR 0078379 (17:1184e)
  • [9] Mario Petrich, The translational hull of a completely 0-simple semigroup, Glasgow Math. J. 9 (1968), 1-11. MR 0229739 (37:5313)
  • [10] -, Translational hull and semigroups of binary relations, Glasgow Math. J. 9 (1968), 12-21. MR 0229740 (37:5314)
  • [11] -, The semigroup of endomorphisms of a linear manifold, Duke Math. J. 36 (1969), 145-152. MR 0238975 (39:335)
  • [12] I. S. Ponizovski, Transitive representations by transformations of a class of semigroups, Sibirsk. Mat. Ž. 5 (1964), 896-903. MR 0171866 (30:2092)
  • [13] N. R. Reilly, Bisimple $ \omega $-semigroups, Proc. Glasgow Math. Assoc. 7 (1966), 160-167. MR 0190252 (32:7665)
  • [14] B. M. Shain, ``A contribution to the theory of generalized groups and generalized heaps'' in Theory of semigroups and its applications, edited by V. V. Vagner, Izdat Saratov Univ., Saratov, 1965, pp. 286-324. (Russian) MR 0209385 (35:283)
  • [15] E. J. Tully, Jr., Representation of a semigroup by transformations of a set, Doctoral dissertation, Tulane University, New Orleans, La., 1960.
  • [16] V. V. Vagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122. (Russian) MR 0048425 (14:12b)
  • [17] -, Semigroups of partial transformations with the symmetric transitivity relation, Izv. Vysš. Učebn. Zaved. Matematika 1 (1957), 81-88. (Russian) MR 0160839 (28:4049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.90

Retrieve articles in all journals with MSC: 20.90


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0246984-3
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society