MAPPING CYLINDER NEIGHBORHOODS

BY

VICTOR NICHOLSON

1. Let X be a triangulated 3-manifold and C a subcomplex of X. A regular
neighborhood of C in X is the union of all simplexes in a second derived sub-
division of X that intersect C. Every subcomplex C of X has a regular neighborhood.
We consider the converse using a generalization of regular neighborhoods.

Let C be a closed subset of a space X. A subspace U of X is called a mapping
cylinder neighborhood (MCN) of C if $U = f(M \times I) \cup C$ where f is a map of a
space $M \times I$ into X such that $f|_{M \times [0, 1)}$ is a homeomorphism into $X - C$, $f(M \times 1) = C \cap \text{Cl} (X - C)$ and $f(M \times (0, 1]) \cup C$ is open in X. As noted in [12], regular
neighborhoods are MCN's.

Suppose C is a closed subset of a 3-manifold X and $U = f(M \times I) \cup C$ a MCN
of C. We note some properties of U.

(a) Since $M \times (0, 1)$ is a 3-manifold, M is a generalized 2-manifold [17] and
thus a 2-manifold [19]. Hence U is a 3-manifold with boundary.

(b) If C is compact then U is compact (Lemma 1).

(c) If C is compact and U' is another MCN of C then $\text{Int } U$ and $\text{Int } U'$ are
homeomorphic [12]. Thus U and U' are homeomorphic [9, Theorem 3].

Our converse: Suppose X is a 3-manifold and $C \subseteq X$ is a topological complex,
i.e., C is homeomorphic to a locally finite simplicial complex. Suppose also that
C is closed in X and C has a MCN. Then C must be a subcomplex of some triangu-
lation of X.

THEOREM 1. If C is a topological complex which is a closed subset of a 3-manifold
X, then C is tame if and only if C has a MCN.

Our motivation for Theorem 1 was the special case where C is a 1, 2 or 3-cell
and M is a 2-sphere [6], [10]. An immediate corollary to Theorem 1 is

THEOREM 2. Suppose C is a tame topological complex in a 3-manifold X, g is a
map of X into a 3-manifold Y such that $g^{-1}g(C) = C$, g is a homeomorphism on $X - C$,
and $g(C)$ is a topological complex. Then $g(C)$ is tamely embedded in Y.

Proof. By Theorem 1, C has a MCN U. The conditions on g guarantee that
$g(U)$ is a MCN of $g(C)$.

A special case of Theorem 1 in dimension four is also immediate. Suppose N
is a space, $f: N \to N$ an onto map, and N_f the mapping cylinder defined by N and

Presented to the Society, January 24, 1969; received by the editors November 5, 1968.

(*) This paper is part of the author's Ph.D. thesis which was prepared under the supervision
of T. M. Price at the University of Iowa.

259
f. Let $g: N \times I \to N_f$ be the natural map. If there exists a pseudo-isotopy $k(N) \to N$ such that $k_0 = \text{id}$ and $k_1 = f$, then the map $h: N_f \to N \times I$ defined by $h(g(x, t)) = (k_1(x), t)$ is a homeomorphism. If G is a cellular upper semicontinuous decomposition of a 3-manifold M and M/G is a 3-manifold, then there exists a pseudo-isotopy of M onto itself that shrinks the nondegenerate elements to points [18]. Thus such a pseudo-isotopy exists when N and $f(N)$ are 3-manifolds and f is the projection map of a cellular upper semicontinuous decomposition of N. We have

Theorem 3. Suppose N is a compact connected 3-manifold in a 4-manifold Y. Suppose M is a 3-manifold and $U = f(M \times I)$ is a MCN of N where the restriction of f to each component of $M \times I$ is a cellular map. Then U is a bicollar for N in Y.

Is the cellularity condition given in Theorem 3 implied by the fact that Y is a 4-manifold? This is the case in dim 3; see Lemma 3(2).

2. **Proof of Theorem 1.** We have placed the lemmas in the sections following the proof.

Proof. Suppose C has a MCN. By the procedure described at the first of the proof of Lemma 6 the union of the 1 and 2-skeleton of C has a MCN. Thus the interior of each 2-simplex is tame by Lemma 3(3). By Lemmas 5 and 6 the 1-skeleton of C is tame. In particular, the boundary of each 2-simplex in C is tame. It is a consequence of Lemmas 5.1 and 5.2 of [13] that a disk is tame if its interior and boundary are tame. Therefore the star of each vertex in C is tame, since each 2-simplex is tame and the 1-skeleton is tame [7, Theorem 3.3]. Thus C is locally tame and hence tame [3]. Suppose C is tame. Then C has a regular neighborhood under some triangulation of X. This regular neighborhood is a MCN. This completes the proof.

2.a. Suppose C is a closed subset of a 3-manifold X and $U = f(M \times I) \cup C$ is a MCN of C. We let $F = f(M \times 1)$ and $i_t(t \in I)$ denote the identification of $M \times t$ with M. For example, if $x \in C \cap C_t(X - C)$ then $f(i_t F^{-1}(x) \times 0) \subset \text{Bd} \ U$.

Lemma 1. Suppose C is a closed subset of a 3-manifold X and $U = f(M \times I) \cup C$ is a MCN of C. (1) If A is open in $F(M \times 1)$ and contractible then every simple closed curve in $F^{-1}(A)$ separates $F^{-1}(A)$. (2) If $A \subset C$ is compact then $F^{-1}(A)$ is compact.

Proof. Suppose not. There exist simple closed curves S_1 and S_2 in $f(i_t F^{-1}(A) \times 0) \subset \text{Bd} \ U$ which intersect in one point and cross there. Both curves are inessential in U because of the mapping cylinder structure over A. A simple closed curve which bounds a singular disk has a neighborhood homeomorphic to a solid torus. Thus $S_1 \cup S_2$ has an orientable neighborhood in $\text{Bd} \ U$. This is a contradiction. A 3-manifold with boundary having orientable boundary cannot contain two inessential simple closed curves in its boundary which cross at an odd number of points. See [11, p. 29] or [15, Lemma 6.1].

(2) The local compactness of the MCN implies that F is a compact map. For let T be any compact subset of C. There exists an open set $Q \subset U$ such that $T \subset Q$.
c Q c Int U and Q is compact. For each point \(p \in F^{-1}(T) \), the arc \(f(i_1(p) \times I) \) intersects \(Q - Q \). Since \(F^{-1}(T) \) is closed, \(J = f(i_1 F^{-1}(T) \times I) \cap (\bar{Q} - Q) \) is compact. Thus \(F^{-1}(T) \) is compact, since the projection of \(M \times I \) onto \(M \times 1 \) carries \(f^{-1}(J) \) onto \(F^{-1}(T) \).

2.b. 2-simplexes. First some definitions. Let \(x \in L \) where \(L \) is a 2-manifold with boundary in a 3-manifold \(X \). The local separation theorem \([1, \S 2, \text{Corollary 2}]\) yields: For every \(\varepsilon > 0 \), there exists an \(\varepsilon \)-neighborhood \(N \) of \(x \) in \(X \) such that \(N - L \) has two components \(O_1 \) and \(O_2 \). If \(x \in \partial L \), then \(O_2 = \emptyset \). If \(x \in \text{Int} L \), then \(O_1 \) and \(O_2 \) are nonempty. We say \(U' \subset X \) is a 1-sided neighborhood of \(x \) if there exists a neighborhood \(N \) of \(x \) from the local separation theorem such that \(O_1 \cup (N \cap L) \subset U' \) and \(O_2 \cap U' = \emptyset \).

Let \(C \) be a topological complex which is closed in \(X \) and consists of 1 and 2-simplexes. Let \(U = f(M \times I) \) be a MCN of \(C \) and \(\Delta \) a 2-simplex of \(C \). We say \(U \) contains a 1-sided MCN, \(U' \), of \(x \in \text{Int} \Delta \) if there exists a disk \(D \subset M \) such that \(V = f(D \times I) \) is a 1-sided neighborhood of \(x \). We shall show in Lemma 3 that 1-sided MCN’s always exist. Lemma 2 is a standard type of result for 2-manifolds; we omit a proof.

Lemma 2. Let \(M \) be a 2-manifold, \(B \) a nonempty, proper open connected subset of \(M \) such that \(B \) is compact and every simple closed curve in \(B \) separates \(B \). If \(E \) is a continuum in \(B \) and \(K \) is a continuum in \(B \) which separates \(E \) from \(\partial B \), then \(E \) lies in the interior of a disk \(D \subset B \).

Consider a fixed \(x \in \text{Int} \Delta \). We distinguish two sets, \(H \) and \(L \), in \(M \times 1 \) which correspond to the two sides of \(\Delta \) near \(x \). Let \(N, O_1 \) and \(O_2 \) be given for \(x \) by the local separation theorem. Let \(P \) be a disk such that \(x \in \text{Int} P \subset \text{Int} (N \cap \text{Int} \Delta) \) and \(z \in \text{Int} P \). For \(y \in F^{-1}(z) \), let \(A_y \) denote the arc \(f(i_1(y) \times I) \). There exists a first point \(p \) from \(z \) in \(A_y \cap (\bar{N} - N) \). Then \([z, p) \subset N \) and \((z, p) \subset O_1 \) or \(O_2 \). We say \(A_y \) ends through \(O_1 \) or \(O_2 \), respectively. Let \(H(A_y) \) be the set of all points \(y \) such that \(A_y \) ends through \(O_1 \) or \(O_2 \). Let \(H = \bigcup H_A, L = \bigcup L_A, z \in \text{Int} P \).

We show \(H \) and \(L \) are open and separated. We assume the neighborhood \(N \) was chosen to lie inside a neighborhood \(Q \) of \(x \) homeomorphic to \(E^3 \). Suppose there exist \(y \in H \) and \(b \in L \) lying in the same component of \(F^{-1}(\text{Int} P) \). There exist an arc \(by \subset F^{-1}(\text{Int} P) \) and an arc \(F(b)F(y) \subset \text{Int} P \). There exists \(0 < t < 1 \) so that the arc \(f(i_1(by) \times t) \) together with \(F(b)F(y) \) and subarcs of \(A_y \) and \(A_b \) form a simple closed curve \(S \subset Q \). Since \(A_y \) ends through \(O_1 \) and \(A_b \) ends through \(O_2 \), \(S \) links \(\partial P \) (homology linking mod 2; see [4]). But since \(by \subset F^{-1}(\text{Int} P) \), \(S \) can be shrunk to a point in \(Q - P \) by first pulling it into \(\text{Int} P \) using the mapping cylinder. Contradiction. Therefore \(H \) and \(L \) are the union of components of \(F^{-1}(\text{Int} P) \). Thus they are open and separated.

Lemma 3. Suppose \(C \) is a topological complex which is a closed subset of a 3-manifold \(X \). Suppose \(C \) consists of 1 and 2-simplexes and \(U = f(M \times I) \) is a MCN of \(C \). Also suppose \(\Delta \) is a 2-simplex in \(C \) and \(x \in \text{Int} \Delta \). Then (1) \(U \) contains a 1-sided MCN.
of x on each side of Δ and the two disks defining the MCN’s are disjoint, (2) Hx and L_x are cellular in M, and (3) Int Δ is locally tame.

Proof. (1) Let x be a distinguished point in Int Δ and N, O1 and O2 be given for x by the local separation theorem such that N lies in a neighborhood of x homeomorphic to E^3. Let P be a disk such that $x \in Int P \subseteq (N \cap Int Δ)$ and let H and L be given as in the discussion preceding the lemma. We consider only H. By Lemma 1, $F^{-1}(x)$, and hence H_x, is compact. If H_x were not connected we could separate two of its components, say T_1 and T_2, in $M \times 1$ with a finite number of simple closed curves $S_i \subseteq H$. But points in $f(T_1 \times I)$ and $f(T_2 \times I)$ can be joined by small arcs in O_1. A contradiction is reached since $f((\bigcup S_i \times [0, 1]))$ separates $f(M \times [0, 1])$ and x is not a limit point of $f(\bigcup S_i \times I)$. Thus $F|H$ is monotone.

There exist disks D_1 and D_2 such that $x \in Int D_1 \subseteq D_1 \subseteq Int D_2 \subseteq Int P$. Let $E = H_x$ and $B = \bigcup H_y$, $y \in Int D_2$. Let $K = \bigcup H_y$, $y \in Bd D_1$. The map F is closed on $F^{-1}(D_2)$ and H. The inverse image of a connected set is connected under a monotone closed map. Thus the sets E, K and B satisfy the hypothesis of Lemma 2. Let $\tilde{U} = f(i_x(D) \times I)$ be a 1-sided MCN of x. For since $D \subseteq H$, there exists $t < 1$ such that $f(i_x(D) \times \{t, 1\}) \subseteq O_1$. Picking a neighborhood $N(q)$ of x by the local separation theorem such that $\tilde{U} \subseteq N(q)$ and $N(q) \cap f(i_x(D) \times \{0, 1\}) = \emptyset$, we have $O_2(q) \cap f(i_x(D) \times I) = \emptyset$. Since $H_x \cap Bd D = \emptyset$ and $i_x(Bd D) \times I$ separates $M \times I$, there exists a neighborhood $N(r)$ of x from the local separation theorem such that $O_1(r) \subseteq U'$. For a neighborhood $N(s)$ of x from the local separation theorem contained in $N(q) \cap N(r)$ we have $O_1(s) \subseteq U'$ and $O_2(s) \cap U' = \emptyset$. Therefore U' is a 1-sided MCN of x. A similar argument using L yields a disk disjoint from D and a 1-sided MCN of x on the O_2 side of $Δ$.

(2) Let $N(s)$ be the neighborhood of x given above and D_3 a disk such that $x \in Int D_3 \subseteq D_3 \subseteq (N(s) \cap Int Δ)$. Then $H \cap F^{-1}(Int D_3)$ is an open connected subset of Int D and not separated by H_x. Thus H_x, and similarly L_x, is cellular.

(3) We shall show that $X - Int Δ$ is locally simply connected at x. Consider the 1-sided MCN of x, $U' = f(i_x(D) \times I)$ and let $\epsilon > 0$. There exists an ϵ-neighborhood $N(\epsilon)$ of x from the local separation theorem such that $O_1(\epsilon) \subseteq U'$ and $O_2(\epsilon) \cap U' = \emptyset$. Since $F^{-1}(N(\epsilon) \cap U')$ is open in $i_x(D) \times I$ and H_x is cellular, there exists a disk $G \subseteq i_x(D)$ and a number $t < 1$ such that $G \times \{t, 1\} \subseteq F^{-1}(N(\epsilon) \cap U')$ and $H_x \subseteq Int G \times 1$. Let $T = (Int G) \times \{t, 1\}$. There exists a neighborhood Q of x from the local separation theorem such that $Q \subseteq N(\epsilon)$ and $Q \cap f((D \times I) \setminus T) = \emptyset$. The component $O_1(q)$ of $Q - Int Δ$ lies in $f(T)$. Let J be any simple closed curve in $O_1(q)$. There exists $r < 1$ such that $f(D \times r)$ separates J from $f(D)$ in $f(i_x(D) \times I)$. Thus J can be shrunk to a point in the interior of the 3-cell $f(G \times [t, r]) \subseteq N(\epsilon)$. Using the 1-sided MCN of x on the other side of Int $Δ$, we have that $X - Int Δ$ is locally simply connected at x. Since $X - Int Δ$ is locally simply connected at each $x \in Int Δ$, Int Δ is locally tame [5].
2.c. l-complexes. Let \(n \) be a positive integer. An \(n \)-frame \(T \) is the union of \(n \)-arcs \(A_t = [p, a_t] \) such that \(A_t \cap A_s = p \). The points \(a_t \) are the endpoints of \(T \). The interior of \(T \), \(\text{Int} \ T \), is \(T \) minus its endpoints. We define a MCN of the interior of \(T \). No confusion should result from this different use of MCN. Let \(S^2 \) denote the 2-sphere and \(D_i, i = 1, \ldots, n \), be disjoint disks in \(S^2 \). Let \(M = S^2 - \bigcup D_i \) and consider \(M \times I \) as a subspace of \(S^2 \times I \). If \(T \) is an \(n \)-frame in a 3-manifold \(X \) then \(\text{Int} \ T \) is said to have a MCN, \(U = f(M \times I) \), if there exists a map \(f \) of \(M \times I \) into \(X \) such that (1) \(f|_{M \times [0, 1)} \) is a homeomorphism into \(X - T \), (2) \(f(M \times 1) = \text{Int} \ T \), (3) \(U \) is a neighborhood of \(\text{Int} \ T \) in \(X \), and (4) for any sequence \(\{b_i\} \) in \(M \times I \) which converges to a point of \(\text{Bd} D_i \times 1 \), \(\{f(b_i)\} \) converges to the endpoint \(a_t \) of \(T \).

Lemma 4. Suppose \(T \) is an \(n \)-frame in a 3-manifold \(X \). If there exists a MCN, \(f(M \times I) \), of \(\text{Int} \ T \) then \(\text{Int} \ T \) is locally tame.

Proof. The proof of Lemma 4 follows the procedure used to prove Theorem 1 in [6]. We partition a neighborhood of \(\text{Int} \ T \) and a neighborhood of the interior of a standard \(n \)-frame in \(E^3 \) into homeomorphic pieces. We then obtain a homeomorphism between the neighborhoods which carries \(T \) onto the standard \(n \)-frame.

Since for each \(t \in (0, 1) \), \(f(M \times t) \) is bicollared, we may assume that \(f(M \times 0) \) is locally tame. Let \(C \) be a circle, \(A = C \times (0, 1) \times I \) and \((x, y, z) \in A \) such that \(x \in C \), \(y \in (0, 1) \) and \(z \in I \). Let \(B \) denote the half-open annulus in \(A, B = \{(x, y, z) : y = 1/2z + 1/2\} \).

The properties given in Lemma 1 also hold for a MCN of \(\text{Int} \ T \). It therefore follows that \(F \) is closed and monotone. Thus the inverse image under \(F \) of any connected subset of \(\text{Int} \ T \) is connected. For each \(i \), \(F^{-1}(\text{Int} A_i) \) is a component of \((M \times I) - F^{-1}(p) \) and \(F^{-1}(\text{Int} A_i) \cup D_i \) is a component of \((S^2 \times I) - F^{-1}(p) \). Since each component of \(S^2 \) minus the continuum \(F^{-1}(p) \) is homeomorphic to \(E^2 \), subtracting the disk \(D_i \) yields that \(F^{-1}(\text{Int} A_i) \) is an open annulus. Thus there exist homeomorphisms \(k_1 \) and \(k_2 \) of \(A \) into \(i_1 F^{-1}(\text{Int} A_i) \times I \) such that \(B(a_t) = \text{Cl} (f(k_1(B)) \) is a disk with \(B(a_t) \cap T = a_t \), \(B(p_t) = \text{Cl} (f(k_2(B)) \) is a disk with \(B(p_t) \cap T = p \), \(\text{Int} B(a_t) - a_t \), and \(\text{Int} B(p_t) - p \) are locally tame, and \(B(p_t) \cap B(a_t) = \emptyset \). Similarly, for each \(x \in \text{Int} A_i \), \(F^{-1}(\text{Int} A_i) - F^{-1}(x) \) is the union of two disjoint open annuli. By mapping \(A \) homeomorphically into one of these annuli we can define a disk \(B(x) \) such that \(B(x) \cap T = x \) and \(B(x) - x \) is locally tame. For distinct \(x \) and \(y \) in \(A_i \), there exist numbers \(t_1 < t_2 < 1 \) such that if \(W = \text{Cl} (f(M \times [t_1, 1]) - f(M \times [t_2, 1]) \) and if \(p \) is the closure of the component of \(f(M \times I) - (B(x) \cup B(y)) \) that intersects \(\text{Int} A_i \) then \(W \cap p \) is a tame solid torus. Let \(O \) be the closure of the component of \(f(M \times I) - \bigcup B(a_t) \) that contains \(\text{Int} T \). Let \(L_i \) be the closure of the component of \(O - \bigcup B(p_t) \) that contains \(\text{Int} A_i \) and \(L = \text{Cl} (O - \bigcup L_i) \). Let \(O' \) be the unit ball in \(E^3 \) and \(T' \) an \(n \)-frame whose vertex is the origin, whose endpoints lie in \(\text{Bd} O' \) and which is composed of straight line segments. Partition \(O' \) into regions \(L_i' \) corresponding to \(L_i \) and \(L_i \). It follows from the proof of Theorem 1 of [6] that we may partition \(L_i - A_i \) and \(L_i' - A_i \) into tame solid tori as above whose diameters
go to zero as the tori approach T in such a way that a homeomorphism $R_i : L_i \to L'_i$ can be obtained by defining homeomorphisms on corresponding tori. Let $J_1 = f(M \times [0, 1/2]) \cap L$, $J_j = f(M \times [|j|, 1/|j| + 1]) \cap L$, $j \geq 2$. Each J_i ($j \geq 1$) has tame boundary and is homeomorphic to $M \times I$. There exists a collection of regions $\{J'_i\}$ in L' and a sequence of onto homeomorphisms $S_j (j \geq 1)$ such that $S_i : J_i \to J'_i$ and S_j extends R_i ($i = 1, \ldots, n$) and S_k ($k < j$). The union of the S_i and the R_i can be extended to a homeomorphism of O onto O' that carries T onto T'. Thus $\text{Int } T$ is locally tame.

Lemma 5. Suppose C is a topological 1-complex which is a closed subset of a 3-manifold X. Suppose C has a MCN, $f(M \times I)$. Then C is tame.

Proof. Let p be a vertex of C and T the n-frame consisting of all simplexes in C containing p. We shall show that $f(i_1 F^{-1} (\text{Int } T) \times I)$ is a MCN of $\text{Int } T$. It follows from Lemma 1 that F is closed and monotone. Let $[p, a_i]$ be a 1-simplex in T. Let $x, y \in (p, a_i)$ and $q \in (x, y)$. Let $K_z = f(i_1 F^{-1} (z) \times 0)$, $z = x, y$ and q. There exist simple closed curves S and S' which separate K_z from K_x and K_q from K_y in $f(i_1 F^{-1} [x, y] \times 0)$, respectively. The curves S and S' can be shrunk to points on disjoint subsets of $f(M \times (0, 1]) \cup S \cup S'$. They therefore bound disjoint disks there by Dehn’s Lemma [16]. Let K be the union of the two disks and the component of $f(i_1 F^{-1} [x, y] \times 0) - (S \cup S')$ that contains K_x. Since a simple closed curve in K can be pushed off of the two disks, we can obtain from Lemma 1 that every simple closed curve in K separates K. Thus K is a 2-sphere [2]. It follows that $F^{-1}(p, a_i)$ is an open annulus. Thus for each i, there exists a disk B_i in $f(i_1 F^{-1}(p, a_i) \times I) \cup a_i$ constructed as in the proof of Lemma 4 such that $B_i \cap T = a_i$. The component of $f(M \times 0) - \bigcup \text{Bd } B_i$ which contains $f(i_1 F^{-1}(p) \times 0)$ is a sphere with n-holes since its union with the disks B_i is a 2-sphere (again by Lemma 1 and [2]). By the construction of the B_i, $F^{-1}(\text{Int } T)$ is a sphere with n-holes. It follows that $f(i_1 F^{-1}(\text{Int } T) \times I)$ is a MCN of $\text{Int } T$. By Lemma 4, C is locally tame and hence tame [3].

Lemma 6. Suppose C is a topological complex which is a closed subset of a 3-manifold X. If C has a MCN then the 1-skeleton of C has a MCN.

Proof. Let M' be a 2-manifold and f' a map of $M' \times I$ into X such that $f'(M' \times I) \cup C$ is a MCN of C. Let K_i be the collection of all 3-simplexes in C. Let N_i be a layer in the collar for $\text{Bd } K_i$ in K_i. Let $M = M' \cup \{N_i\}$ and $f : M \times I \to X$ be such that $f|M' \times I = f'$, $f|N_i \times I$ is a homeomorphism onto the region between N_i and $\text{Bd } K_i$, and $f(N_i \times 0) = N_i$. Then $f(M \times I) \cup C$ is a MCN of C_0, the union of the 1- and 2-skeleton of C. Having removed the 3-simplexes we proceed to eliminate the 2-simplexes. Let Δ be a 2-simplex in C_0. We shall show there exists a 2-manifold M_1 and a map H_1 of $M_1 \times I$ into X such that $H_1(M_1 \times I)$ is a MCN of $C_0 - \text{Int } \Delta$ and $H_1(M_1 \times I)$ agrees with $f(M \times I)$ outside of $f(i_1 F^{-1}(\text{Int } \Delta) \times I)$. Defining such a map for each 2-simplex in C_0 will yield a MCN of the 1-skeleton of C. Let
By Lemma 3 there exist disjoint disks D_i ($i=1, 2$) in M such that $F(D_i \times I) \subseteq \text{Int } \Delta$ and $U_i = f(D_i \times I)$ are 1-sided MCN's of p on opposite sides of Δ. Let Δ_1 and Δ_2 be disks lying in the intersection of the interiors of $F(D_1 \times I)$ and $F(D_2 \times I)$ such that $p \in \text{Int } \Delta_1 \subseteq \Delta_1 \subseteq \text{Int } \Delta_2$.

The MCN of $C_0 - \text{Int } \Delta_1$. Intuitively, we bore a hole through the MCN. Let $A = F^{-1}(\text{Bd } \Delta_1) \cap (D_1 \times I)$ and $J = F^{-1}(\text{Bd } \Delta_2) \cap (D_1 \times I)$. The region between A and J is an open annulus. Let B be a simple closed curve lying in this region and concentric to A and J. There exists a map k of $D_1 \times I$ onto itself that carries each region in Figure 1 onto the corresponding region (labeled with a prime) in Figure 2, k is fixed on the boundary of $D_1 \times I$ and the region labeled h is collapsed into
The map k may be extended to map $D_3 \times I$ onto itself in the same manner as k maps $D_3 \times I$ onto itself. The spaces $f_k(\text{Int } D_i \times I)$, $i=1/2$, $1/4$; $i=1, 2$, are each homeomorphic to E^2 because they are homeomorphic to spaces of cellular upper semicontinuous decompositions of E^2, by Lemma 3(2) and [14]. Let E_i denote the annulus

$$f([(\text{Bd } D_1, i_1(B)] \times 0) \cup (i_1(B) \times [0, 1/4]) \cup k([i_1(B), i_1(A)] \times 1/4)) \cup \text{Bd } \Delta_1$$

and T_1 the torus

$$f([(\text{Bd } D_1) \times [0, 1/2]) \cup k([\text{Bd } D_1, i_1(J)] \times 1/2]) \cup [\text{Bd } \Delta_1, \text{Bd } \Delta_2] \cup E_1.$$

It follows from Lemmas 5.1 and 5.2 of [13] that T_1 is tame. Let E_2 and T_2 be the corresponding annulus and torus in U_2. Let M_1 be $f(M \times 0)$ minus $f(\text{Int } D_1 \times 0) \cup f(\text{Int } D_2 \times 0)$ plus $E_1 \cup E_2$. A homeomorphism β may be defined to map $(E_1 \cup E_2) \times I$ onto the tori T_1 and T_2 plus their interiors such that the extension of β on $M_1 \times I$ agrees with γ and yields a MCN of $C_0 - \text{Int } A_2$.

The MCN of $C_0 - \text{Int } \Delta$. We show there exists a map P of X onto itself which collapses the annulus $[\text{Bd } \Delta_2, \text{Bd } \Delta]$ onto $\text{Bd } \Delta$, γ is a homeomorphism on $X - [\text{Bd } \Delta_2, \text{Bd } \Delta]$, and γ moves no point of $X - f(F^{-1}(\text{Int } \Delta) \times I)$. Letting $H_1 = P\beta$ will give us that $H_2(M_1 \times I)$ is a MCN of $C_0 - \text{Int } \Delta$. The following spaces are described in cylindrical coordinates in E^3. Let S be the simple closed curve $(r=1/4, z=0)$. Let L be the solid annulus $(1/4 \leq r \leq 1$, $-1 \leq z \leq 1)$. Let P' be the map of L onto itself defined by

$$P'(r, \theta, z) = \begin{cases} (r + r(1 - |z|), \theta, z), & 0 \leq r \leq 1/2, \\ (r + (1-r)(1-|z|), \theta, z), & 1/2 \leq r \leq 1. \end{cases}$$

The map P' is a homeomorphism on $\text{Bd } L$ and collapses the annulus $(1/2 \leq r \leq 1, z=0)$ into the simple closed curve $(r=1, z=0)$. Let S_1 be a simple closed curve lying in the annulus $[\text{Bd } \Delta_1, \text{Bd } \Delta_2]$ concentric to $\text{Bd } \Delta_1$. There exists a homeomorphism α of the annulus $(1/4 \leq r \leq 1, z=0)$ onto the annulus $[S_1, \text{Bd } \Delta]$ in Δ such that $\alpha(1/4, \theta, 0) \in S_1$, $\alpha(1/2, \theta, 0) \in \text{Bd } \Delta_2$ and $\alpha(1, \theta, 0) \in \text{Bd } \Delta$, for every θ. Since $\text{Int } \Delta$ is locally tame there exists a homeomorphism g of L into X such that g extends α and $(g(L) - \text{Bd } \Delta) \cap \beta(M_1 \times (0, 1)] \cap f(i_1F^{-1}(\text{Int } \Delta) \times I)$. The required map P is: $P(w) = gP'g^{-1}(w)$ for $w \in g(L)$ and the identity elsewhere. This completes the proof.

3. 1-sided MCN's. Let L be a 2-manifold with boundary in a 3-manifold X. Let $x \in L$, U a 1-sided neighborhood of x and N, O_1 and O_2 given for U. We say $X - L$ is locally simply connected on the U side of L at x if for every $\varepsilon > 0$, there exists a neighborhood $N(\varepsilon)$ of x from the local separation theorem such that $N(\varepsilon) \subset N$ and any simple closed curve in $O_1(\varepsilon)$ can be shrunk to a point in $X - L$ on a set of diameter less than ε. If $x \in \text{Int } L(x \in \text{Bd } L)$ then L is said to be locally tame from the U side at x if x has a neighborhood in U homeomorphic to a 3-cell.
(C is locally tame at x). It follows from Theorems 4 and 8 of [5] that L is locally tame from the U side at x if L is locally simply connected on the U side at each point in a neighborhood of x. Let D be a disk. A point x ∈ L is said to have a 1-sided MCN, \(U = f(D \times I) \), if there exists a map \(f : D \times I \to X \) such that \(f(D \times 1) \subset L \), \(f[D \times [0, 1)] \) is a homeomorphism into \(X - L \), and \(U \) is a 1-sided neighborhood of x.

Theorem 4. Suppose L is a 2-manifold with boundary in a 3-manifold X. If \(x \in L \) and x has a 1-sided MCN then L is locally tame from the U side at x.

Proof. The proof of Lemma 3(3) essentially shows that \(X - L \) is locally simply connected on the U side at x for \(x \in \text{Int } L \). The case for \(x \in \text{Bd } L \) is a consequence of Theorem 1. Consider a small neighborhood of x in L as the topological complex and let X be a properly chosen subset of the 1-sided MCN.

We give a short proof of a result which is part of the folklore of upper semi-continuous decompositions.

Theorem 5. Suppose L is a 3-manifold with boundary and G an upper semi-continuous decomposition of L all of whose nondegenerate elements lie in \(\text{Bd } L \) and are cellular in \(\text{Bd } L \). Then \(L/G \) is a 3-manifold with boundary.

Proof. If G is an upper semicontinuous decomposition of \(E^3_+ \), all of whose nondegenerate elements lie in \(E^2 \) and are cellular in \(E^2 \), then \(E^2/G \) has a neighborhood in \(E^2/G \) homeomorphic to \(E^2_+ \). For consider \(E^2_+ \subset E^3 \); then \(E^2/G \) is homeomorphic to \(E^2 \) by [14] and \(E^0/G \) is homeomorphic to \(E^3 \) by [8]. Let P denote the projection map of \(E^3 \) onto \(E^3/G \). For each \(x \in E^2/G \), there exists a disk D such that \(P^{-1}(x) \subset \text{Int } D \). Let \(U = \{(x, y, z) : (x, y, 0) \in D, 0 \leq z \leq 1\} \). Then \(P(U) \) is a 1-sided MCN of x in \(E^2/G \). By Theorem 4, x has a 3-cell neighborhood in \(P(U) \). Hence \(E^2_0/G \) contains a neighborhood of \(E^2/G \) homeomorphic to \(E^2_+ \).

Let h be the projection map of L onto \(L/G \) and \(x \in \text{Bd } L/G \). There exists a neighborhood \(Q \) of \(h^{-1}(x) \) in \(\text{Bd } L \) which is homeomorphic to \(E^2 \) and is the union of elements of G. There exists a neighborhood \(B \) of \(Q \) in \(L \) homeomorphic to \(E^2_+ \). By the above, \(h(B) \) contains a neighborhood of x in \(L/G \) homeomorphic to \(E^2_+ \). Thus \(L/G \) is a 3-manifold with boundary.

References

The University of Iowa, Iowa City, Iowa

Kent State University, Kent, Ohio