Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Mapping cylinder neighborhoods


Author: Victor Nicholson
Journal: Trans. Amer. Math. Soc. 143 (1969), 259-268
MSC: Primary 54.78; Secondary 57.00
DOI: https://doi.org/10.1090/S0002-9947-1969-0248788-4
MathSciNet review: 0248788
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. Alexandroff, On local properties of closed sets, Ann. of Math. 36 (1935), 1-35. MR 1503204
  • [2] R. H. Bing, The Klein sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946), 644-653. MR 0016645 (8:46h)
  • [3] -, Locally tame sets are tame, Ann. of Math. 59 (1954), 154-158. MR 0061377 (15:816d)
  • [4] -, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), 456-483. MR 0087090 (19:300f)
  • [5] -, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 0131265 (24:A1117)
  • [6] R. H. Bing and A. Kirkor, An arc is tame in 3-space if and only if it is strongly cellular, Fund. Math. 55 (1964), 175-180. MR 0170330 (30:568)
  • [7] P. H. Doyle, On the embedding of complexes in 3-space, Illinois J. Math. 8 (1964), 615-620. MR 0167965 (29:5230)
  • [8] E. Dyer and M. E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103-108. MR 0092959 (19:1187e)
  • [9] C. H. Edwards, Jr., Concentricity in 3-manifolds, Trans. Amer. Math. Soc. 113 (1964), 406-423. MR 0178459 (31:2716)
  • [10] H. C. Griffith and L. R. Howell, Jr., Strongly cellular cells in $ {E^3}$ are tame (unpublished).
  • [11] H. Kneser, Eine bermerkung uber dreidimensionalen mannigfaltigkeiten, Nachr. Ges. Wiss. Gottingen (1925), 128-130.
  • [12] K. W. Kwun and F. Raymond, Mapping cylinder neighborhoods, Michigan Math. J. 10 (1963), 353-357. MR 0156324 (27:6248)
  • [13] Edwin E. Moise, Affine structures in 3-manifolds. VIII. Invariance of knot types; Local tame embedding, Ann. of Math. 59 (1954), 159-170. MR 0061822 (15:889g)
  • [14] R. L. Moore, Concerning upper semicontinuous collections of continua which do not separate a given set, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 356-360.
  • [15] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281-299. MR 0087944 (19:441d)
  • [16] -, Dehn's lemma and asphericity of knots, Ann. of Math. 66 (1957), 1-26. MR 0090053 (19:761a)
  • [17] F. Raymond, Separation and union theorems for generalized manifolds with boundary, Michigan Math. J. 7 (1960), 7-21. MR 0120638 (22:11388)
  • [18] W. Voxman, On the shrinkability of decompositions of 3-manifolds, Thesis, The University of Iowa, 1968.
  • [19] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., Vol. 32, Amer. Math. Soc., Providence, R. I., 1963. MR 0182958 (32:440)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78, 57.00

Retrieve articles in all journals with MSC: 54.78, 57.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0248788-4
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society