SOME TAMENESS CONDITIONS INVOLVING
SINGULAR DISKS

BY
WARREN WHITE

Introduction. A familiar sort of lemma in the study of E^3 is the following:

LEMMA. Let D and F be two disks in E^3 with $\partial D \cap F = D \cap \partial F = \emptyset$, and let U be a neighborhood of F° in E^3. Then there is a disk D' in E^3 such that $\partial D' = \partial D$, $D' \subset D \cup U$, and $O(D', F) \subset U$ where $O(D', F)$ is $D' \setminus F$ minus the component containing ∂D. ($D' \setminus F$ means $D' \setminus D' \cap F$.)

Theorem 4 generalizes this lemma, allowing E to be a singular disk with its "interior" disjoint from its "boundary". It is necessary to redefine $O(D', E)$, and this is done in §2; the new definition is motivated by Lemma 5A.

Applications of Theorem 4 to the study of 2-spheres in E^3 are given in §6. Burgess has shown (Theorem 7 in [6]) that a 2-sphere S in E^3 is tame from the interior (i.e., $S \cup \mathrm{int} \ S$ is a 3-cell) if it is "locally spanned" by disks in the interior; Theorem 6 partially extends this result, letting the spanning disks be singular but imposing a condition on their boundaries. Corollary 6A notes that S is then tame from the interior if "small loops in S can be shrunk to points in small subsets of the interior." Corollary 6B answers a question raised by Bing [5, §5].

1. Notation and terminology. We use the letter d to denote the Euclidean metric for Euclidean 3-space E^3, and let $\rho(f, g) = \sup_{x \in A} d(f(x), g(x))$ for any two maps f and g of a space A into E^3. A map f of a subspace of E^3 into E^3 is a δ-map if $\rho(f, I) < \delta$, where I is the identity map.

An n-manifold N is a separable metric space such that each point $p \in N$ has an n-cell neighborhood in N. $N^\circ = \{ p \in N : p$ has a neighborhood in N homeomorphic to $E^n \}$, and $\partial N = N \setminus N^\circ$. N is an n-manifold-with-boundary if $\partial N \neq \emptyset$. A Euclidean neighborhood of a point $p \in N$ is an n-cell neighborhood U together with a linear structure on U. If S is a connected $(n-1)$-manifold in N which separates N, and V is a component of $N \setminus S$, then S is tame from V if $S \cup V$ is an n-manifold. All 2-manifolds and 3-manifolds are assumed to be triangulated [2, Theorem 6], and we use the same symbol for both the manifold and its triangulation.

Presented to the Society, January 23, 1968 under the title A 2-sphere is tame if it is 1-LC through each complementary domain; received by the editors March 5, 1968.

(1) This paper is essentially the author’s Ph.D. thesis written under Joseph Martin at the University of Wisconsin. The author was supported by a National Science Foundation Graduate Fellowship.
Two subsets X and Y of an n-manifold N are in *relative general position* if, for each point $p \in N$, there is a Euclidean neighborhood U of p and triangulations T_X and T_Y of $X \cap U$ and $Y \cap U$ such that

(i) each simplex of T_X and T_Y is a simplex in U,
(ii) dimension $(|T_X| \cap |T_Y|) \leq i+j-n$.

A map $f: X \to N$ is in *general position* if, for each point $p \in N$, there is a Euclidean neighborhood U of p and a triangulation T of $f^{-1}(U)$ such that

(i) for each simplex $a \in T$, $f(a)$ is a simplex in U,
(ii) for any two distinct simplices $a_1 \in T'$ and $a_2 \in T'$, dimension $(f(a_1) \cap f(a_2)) \leq i+j-n$.

If X and Y are two triangulated spaces, then $X \oplus Y$ denotes the disjoint union of both the spaces X and Y and their triangulations.

A *Dehn disk* D in E^3 is the image of a real disk Δ under a map $f: \Delta \to E^3$ such that, for some subdisk $\Delta_1 \subset \Delta$, $f(\Delta_1) \cap f(\Delta_1) = \emptyset$ and $f|_{\Delta_1}$ is piecewise linear and 1-1. The *singularities of* f are the points of Δ in the closure of $\{x \in \Delta : f^{-1}(f(x)) \neq x\}$, and the *singular points of* D are the images under f of these singularities. $\partial D = f(\partial \Delta)$.

If S is a 2-sphere in E^3, then int S and ext S are, respectively, the bounded and unbounded components of $E^3 \setminus S$. *Sierpinski curve* and *inaccessible point* are as defined in [5].

2. Algebraic separation. Let N be a simply-connected n-manifold, $n \leq 3$. An $(n-1)$-polyhedron K is an algebraic separator of N if $K \cap N^\circ$ can be given a triangulation in which each $(n-2)$-simplex is the face of an even number of $(n-1)$-simplices.

Suppose that K is an algebraic separator of N. Any arc $A \subset N$ in general position relative to K hits K at a finite number $\|A \cap K\|$ of points, and standard counting arguments show that:

Proposition 2A. If $A \subset N$ and $B \subset N$ are polygonal arcs in general position relative to K, and A, B have the same endpoints, then $\|A \cap K\| = \|B \cap K\| (\text{mod } 2)$. In particular, if $\|A \cap K\|$ is odd then the endpoints of A are separated in N by K.

Suppose that D is a disk and $K \subset D^\circ$ is an algebraic separator of D. It follows from Proposition 2A that we can define a map $\phi_{D|K}$ on $D \setminus K$ by setting $\phi_{D|K}(x) = \|A \cap K\| (\text{mod } 2)$, where A is any arc from ∂D to x in general position relative to K. We let $O(D, K) = \{x \in D \setminus K : \phi_{D|K}(x) = 1\}$.

Now suppose that Δ is a disk, M a 3-manifold, and $f: \Delta \to M$ a map such that $f|_{\Delta^\circ}$ is locally piecewise linear and in general position. Let $D \subset M$ be a polyhedral disk in general position relative to $f(\Delta^\circ)$, such that $\partial D \cap f(\Delta) = D \cap f(\partial \Delta) = \emptyset$.

Proposition 2B. $f^{-1}(D) = J_1 \cup \cdots \cup J_s$, where the J_i are disjoint simple closed curves. $f(J_i)$ and $f(\bigcup J_i) = D \cap f(\Delta)$ are algebraic separators of D, and $O(D, f(\bigcup J_i)) \subset O(D, f(J_i))$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. To check that \(O(D,f(\bigcup J_i)) \subseteq \bigcup O(D,f(J_i)) \), just note that, for any polygonal arc \(A \) in general position relative to \(f(\bigcup J_i) \), \(A \cap f(\bigcup J_i) = A \cap f(J_i) \). The other statements follow from the general position of \(f|_\Delta \), and of \(D \) relative to \(f(\Delta) \).

3. Induction lemma.

Lemma 3. Let \(M \) be a 3-manifold-with-boundary, \(D \) and \(\Delta \) disks. Let \(f: \Delta \to M \) be a simplicial map in general position, \(U \) an open neighborhood of \(f(\Delta) \) in \(M \).

Suppose \(i: D \to M \) is a simplicial embedding such that \(i(D) \) is in general position relative to \(f(\Delta) \), \(i(D) \cap \partial M = i(\partial D) \), and \(i(\partial D) \cap U = i(D) \cap f(\partial \Delta) = \emptyset \).

If \(O(i(D),f(J)) \subseteq U \) for some simple closed curve \(J \subseteq f^{-1}(i(D)) \), then there is a polyhedral disk \(D' \) in \(M \) such that:

\((3.1) \) \(\partial D' = i(\partial D) \),

\((3.2) \) \(D' \subseteq i(D) \cup U \),

\((3.3) \) \((i(D) \cup U) \setminus (D' \cup U) \neq \emptyset \).

Proof. Our proof will be analogous to those of Papakyriakopoulos [10] and Stallings [11], but where they dealt with maps of disks, we will be working with the map \(i \oplus f: D \oplus \Delta \to M \) defined by \(i \oplus f|_\Delta = i \), \(i \oplus f|_\Delta = f \). To measure the singularity of this map we use the complex \(S(i \oplus f) \) defined by Stallings in his proof of [11, Lemma 3]; for completeness, we reproduce the definition here.

For any simplicial map \(\gamma \) of a complex \(X \) into a complex \(Y \), a simplicial map \(\gamma \times \gamma : X \times X \to Y \times Y \) can be constructed, where \(X \times X \) and \(Y \times Y \) are the cartesian products of complexes as defined in [7, p. 67]. We define \(S(\gamma) \) to be the inverse image under \(\gamma \times \gamma \) of the diagonal of \(Y \times Y \); since this diagonal is a subcomplex of \(Y \times Y \), it follows that \(S(\gamma) \) is a subcomplex of \(X \times X \). The useful property of \(S(\gamma) \) is that, if \(\Pi : Y \to Z \) is a simplicial map into some complex \(Z \), then \(S(\gamma) \subseteq S(\Pi \gamma) \), and \(S(\gamma) = S(\Pi \gamma) \) if and only if \(\Pi \) is 1-1.

We will induct on the number \(\mathcal{H}(i,f) \) of simplices in \(S(i \oplus f) \); assume that \(O(i(D),f(J)) \subseteq U \) for some simple closed curve \(J \subseteq f^{-1}(i(D)) \).

To simplify notation, we will identify \(D \) with \(i(D) \) from this point on in the proof of Lemma 3.

Through standard combinatorial techniques and the ideas Stallings uses in proving Lemma 3 of [11], one can show:

Proposition 3A. There is a regular neighborhood \(N \) of \(D \cap f(\Delta) \) in \(M \), a closed neighborhood \(V \) of \(D \cap f(\Delta) \) in \(D \), and a piecewise linear embedding \(h: D \times [-1, 1] \to N \) such that

\((i) \) \(h(x \times 0) = x \) and \(h(x \times \pm 1) \in \partial N \) for all \(x \in D \setminus V \),

\((ii) \) \(N \subseteq U \cup h((D \setminus V) \times [-1, 1]) \) and \(f(\Delta) \cap h((D \setminus V) \times [-1, 1]) = \emptyset \),

\((iii) \) the maps \(i: D \to N \) and \(f: \Delta \to N \) are simplicial.

The proof of the lemma splits into two parts, depending on whether or not \(N \) is simply connected.
Case I. N simply connected:

PROPOSITION 3B. The components S_1, \ldots, S_r of ∂N are spheres.

Proof. See 7.2 in [10].

PROPOSITION 3C. If p is a point of $O(D, f(J)) \setminus U$, then $h(p \times -1)$ and $h(p \times 1)$ lie in different spheres S_i.

Proof. If E is the disk in Δ bounded by J, then it follows from the general position of f, and of D relative to $f(\Delta)$, that $O(D, f(J)) \cup f(E) = K$ is an algebraic separator of N. $h(p \times [-1, 1])$ is a polyhedral arc in general position relative to K which hits K once; by Proposition 2A, $h(p \times -1)$ and $h(p \times 1)$ are separated in N by $K \subset N^c$, and must therefore lie in different components of ∂N.

PROPOSITION 3D. If p is a point of $O(D, f(J)) \setminus U$, then ∂D bounds a polyhedral disk D' in $(D \setminus p) \cup U$. (D' satisfies (3.1)-(3.3)).

Proof. Suppose ∂D lies in S_1. By Proposition 3C, S_1 does not contain both $h(p \times -1)$ and $h(p \times 1)$. ∂D misses $h(p \times \pm 1)$, so ∂D bounds a disk D_1 in S_1 missing $h(p \times \pm 1)$. For any $x \in D \setminus V$, D_1 contains at most one of the two points $h(x \times -1)$ and $h(x \times 1)$, since D is an algebraic separator of N separating them. Using the embedding of $D \times [-1, 1]$ in N given by Proposition 3A, we can therefore draw D_1 homeomorphically into $(D \setminus p) \cup U$.

Case II. N not simply connected:

Let (N_1, p) be the universal (simply connected) covering space for N. N_1 is a 3-manifold-with-boundary, and we triangulate N_1 so that $p : N_1 \to N$ is simplicial. Let $U_1 = p^{-1}(U \cap N)$.

Let $f_1 : \Delta \to N_1$ be a lifting of f, and let $i_1, i_2, \ldots, i_k, \ldots : D \to N_1$ be the distinct liftings of i.

It is easy to check that

PROPOSITION 3E. The hypotheses of Lemma 3 are satisfied by the substitution:

\[
\begin{array}{ccc}
\text{for} & \text{substitute} & \text{for} & \text{substitute} \\
M & N_1 & U & U_1 \\
\Delta & \Delta & D & D \\
f & f_1 & i & \text{any } i_k
\end{array}
\]
Proposition 3F. For any \(ik, \mathcal{H}(ik, f_1) < \mathcal{H}(i,f) \).

Proof. Consider the commutative diagram:

\[
\begin{array}{ccc}
\pi_1(i_k(D) \cup f_1(\Delta)) & \xrightarrow{\psi_1} & \pi_1(N_1) = 0 \\
(p|_{i_k(D) \cup f_1(\Delta)})_\ast & \downarrow & p_\ast \\
\pi_1(D \cup f(\Delta)) & \xrightarrow{\psi} & \pi_1(N) \neq 0,
\end{array}
\]

where \(\psi_1 \) and \(\psi \) are induced by inclusions. \(\psi \) is onto since \(N \) is a regular neighborhood of \(D \cup f(\Delta) \).

Now, \(S(i_k \oplus f_1) \subset S(p \circ (i_k \oplus f_1)) = S(i \oplus f) \). If \(S(i_k \oplus f_1) = S(i \oplus f) \), then \(p|_{i_k(D) \cup f_1(\Delta)} \) is 1-1 and hence a homeomorphism, so \((p|_{i_k(D) \cup f_1(\Delta)})_\ast \) is onto. But then

\[
0 \neq \pi_1(N) = \psi(p|_{i_k(D) \cup f_1(\Delta)} \ast \pi_1(i_k(D) \cup f_1(\Delta)) = p_\ast \psi_1 \pi_1(i_k(D) \cup f_1(\Delta)) = 0,
\]

a contradiction. Thus, \(S(i_k \oplus f_1) \) is properly contained in \(S(i \oplus f) \), and \(\mathcal{H}(ik, f_1) < \mathcal{H}(i,f) \).

Proposition 3G. For some \(K, J \subset f_1^{-1}i_k(D) \) and \(O(i_k(D), f_1(J)) \neq U_1 \).

Proof. \(J \subset f_1^{-1}(D) = (p|_{f_1(D)})^{-1}(D) = f_1^{-1}(p^{-1}(D)) = f_1^{-1}(\bigcup i_k(D)) = \bigcup f_1^{-1}i_k(D) \); since the disks \(i_k(D) \) are disjoint, \(J \subset f_1^{-1}i_k(D) \) for some \(K \). \(p|_K = i \) is a homeomorphism, so \(p(O(i_k(D), f_1(J)) = O(D, f(J)) \); if \(O(i_k(D), f_1(J)) \subset U_1 \), then \(O(D, f(J)) \subset p(U_1) = U \cap N \), a contradiction to our assumption that \(O(D, f(J)) \neq \emptyset \).

Proposition 3H. There is a polyhedral disk \(D' \) in \(M \) satisfying (3.1)–(3.3).

Proof. Let \(D_1 = i_k(D) \), where \(K \) is given by Proposition 3G. By our induction, there is a polyhedral disk \(D'_1 \) in \(N_1 \) such that:

(i) \(\partial D'_1 = \partial D_1 \),
(ii) \(D'_1 \subset D_1 \cup U_1 \),
(iii) \((D_1 \setminus U_1) \setminus (D'_1 \setminus U_1) \neq \emptyset \).

Since \(p|_{D_1} \) is a homeomorphism, the singularities of \(p: D'_1 \to M \) all lie in \(U_1 \); \(p(U_1) \cap p(\partial D'_1) \subset U \cap \partial M = \emptyset \), so we can apply Dehn's lemma [9, Theorem IV.3] to get a polyhedral disk \(D' \) in \(M \) such that:

(iv) \(\partial D' = p(\partial D'_1) \),
(v) \(D' \subset p(D'_1) \cup U \).

It is easy to check that (i)–(v) imply that \(D' \) satisfies (3.1)–(3.3).

4. Using a singular disk to "cut back" a real disk.

Theorem 4. Let \(U_0 \) be an open subset of \(E^3 \), \(\Delta_0 \) a disk, and \(f_0: \Delta_0 \to E^3 \) a map such that \(f_0(\Delta_0) \cap U_0 = f_0(\Delta^o_0) \) and \(f_0|_{\Delta^o_0}: \Delta^o_0 \to E^3 \) is locally piecewise linear and in general position.
Suppose that \(D \subset E^3 \) is a polyhedral disk such that \(D \cap f_0(\partial \Delta_0) = \partial D \cap f_0(\Delta_0) = \emptyset \). Then there is a polyhedral disk \(D' \) in \(E^3 \) such that

\[
\begin{align*}
\text{(4.1)} & \quad \partial D' = \partial D, \\
\text{(4.2)} & \quad D' \subset D \cup U_0, \\
\text{(4.3)} & \quad D' \text{ is in general position relative to } f_0(\Delta_0), \\
\text{(4.4)} & \quad O(D', D' \cap f_0(\Delta_0)) \subset U_0.
\end{align*}
\]

Proof. We may assume that \(\overline{U}_0 \) is locally polyhedral \(\text{mod } f_0(\partial \Delta_0) \), and that \(U_0 \cap \partial D = \emptyset \). For any disk \(D' \) satisfying (4.1) and (4.2), let \(\mathcal{H}(D') \) be the number of components of \(D' \setminus U_0 \); \(\mathcal{H}(D') \) is finite because \(\overline{U}_0 \) is polyhedral near \(D' \).

\(D \) satisfies (4.1) and (4.2); we will induct on \(\mathcal{H}(D) \). By adjusting \(D \) within \(U_0 \), if necessary, we may assume that \(D \) is in general position relative to \(f_0(\Delta_0) \); if \(O(D, D \cap f_0(\Delta_0)) \subset U_0 \), as is the case when \(\mathcal{H}(D) = 1 \), then we have nothing to prove. Suppose that \(O(D, D \cap f_0(\Delta_0)) \subset U_0 \).

Since \((f \cup U_0) \cap f_0(\partial \Delta_0) = \emptyset \), we can choose a disk \(\Delta \subset \Delta_0 \) such that \(f = f_0|\Delta : \Delta \to E^3 \) is piecewise linear and in general position, and

\[
D \cap f_0(\Delta_0) = f(\Delta_0)|f(\partial \Delta).
\]

Using standard Euclidean-space techniques, together with the fact that

\[
f_0(\Delta_0) \cap f_0(\partial \Delta_0) = \emptyset,
\]

one can show:

Proposition 4A. There is a 3-manifold-with-boundary \(M \subset E^3 \) such that

\[
\begin{align*}
\text{(i)} & \quad D \cup f(\Delta) \subset M, \\
\text{(ii)} & \quad D \cap \partial M = \partial D, \\
\text{(iii)} & \quad M \cap f_0(\partial \Delta_0) = \emptyset.
\end{align*}
\]

Furthermore, \(M \), \(D \), and \(\Delta \) may be triangulated so that the hypotheses of Lemma 3 are satisfied by \(M \), \(D \), \(\Delta \), \(f \), \(U = U_0 \cap M \), and the natural injection \(i : D \to M \).

Since \(O(D, D \cap f_0(\Delta_0)) \subset U_0 \), we have also \(O(D, D \cap f(\Delta)) \subset U \). By Proposition 2B, \(O(D, D \cap f(J)) \subset U \) for some simple closed curve \(J \subset f^{-1}(D) \). Lemma 3 then gives us a polyhedral disk \(D' \) such that

\[
\begin{align*}
\text{(4.1)} & \quad \partial D' = \partial D, \\
\text{(4.2)} & \quad D' \subset D \cup U \subset D \cup U_0, \\
\text{(3.3)} & \quad (D \cup U)
\] \(\cup (D' \cup U) \neq \emptyset.
\]

To show that (3.3) implies \(\mathcal{H}(D') < \mathcal{H}(D) \), we note

Proposition 4B. \(D' \setminus U \subset D' \setminus U_0 \), \(D \setminus U \subset D \setminus U_0 \), and each component of \(D' \setminus U \) is a component of \(D \setminus U \).

Proof. \(D^* \setminus U = D^*(U_0 \cap M) = (D^* \setminus U_0) \cup (D^* \setminus M) = D^* \setminus U_0 \), where \(D^* \) is either \(D' \) or \(D \). That the components of \(D' \setminus U \) are components of \(D \setminus U \) follows from (4.1) and (4.2) above.

Remark. The proof of Theorem 4 shows that we can actually have \(D' \) satisfy

\[
O(D', D' \cap f_0(J)) \subset U_0, \text{ for each simple closed curve } J \subset f_0^{-1}(D').
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
5. Applying Theorem 4. Throughout the remainder of the paper, Δ will represent a standard disk. Let M be a 3-manifold, S a 2-manifold in M, and $F \subset S$ a disk.

Proposition 5A. Let \mathcal{G} be the class of all maps $g: \partial \Delta \to F^o$ which are piecewise linear into F and in general position. Then, for an arbitrary map $f: \partial \Delta \to F$, $\phi_{F|f(\partial \Delta)} = \lim_{g \in \mathcal{G}, g(\partial \Delta) \to f(\partial \Delta)} \phi_{F|g(\partial \Delta)}$ exists on $F \setminus f(\partial \Delta)$, and $\phi_{F|g(\partial \Delta)}(x) = \phi_{F|f(\partial \Delta)}(x)$ for any map $g \in \mathcal{G}$ which is homotopic to f in $F \setminus x$.

Proof. Both assertions follow from the easily demonstrated fact that if two maps g_1 and $g_2: \partial \Delta \to F$ are piecewise linear into F, in general position, and homotopic in $F \setminus x$, then $\phi_{F|g_1(\partial \Delta)}(x) = \phi_{F|g_2(\partial \Delta)}(x)$.

If V is a component of $M \setminus S$, then a blister of F in V is a map $f: \Delta \to F \cup V$ such that $f(\Delta) \cap S = f(\partial \Delta)$. We let $O(F,f) = \{ x \in F \setminus f(\partial \Delta) : \phi_{F,(\partial \Delta)}(x) = 1 \}$, and denote $f(\Delta) \cup O(F,f)$ by $\langle f \rangle_F$.

Lemma 5A. Let S be a 2-sphere in E^3, $F \subset S$ a disk. Let f be a blister of F in $\text{int } S$, and B a 3-cell in E^3, such that $(f)_p \subset B^o$ and $f|_{\Delta^o}: \Delta^o \to E^3$ is locally piecewise linear and in general position.

Suppose p is a point of $O(F,f)$, q is a point of $\text{int } S \setminus B$, and $qp \subset E^3$ is a polygonal arc in general position relative to $f(\Delta^o)$ such that $qp \cap p \subset \text{int } S$. Then $||qp \cap f(\Delta)||$ is odd.

Proof. Pick a point r in $\text{ext } S \setminus B$. We can use Theorem 5.37 of [12] to extend qp to a polygonal arc $qp \subset E^3$ such that pr misses $S \setminus O(F,f)$ and $f(\Delta)$.

Let $\delta = d(f(\partial \Delta), (E^3 \setminus B) \cup qpr)$, and triangulate S so that F is a polyhedron in S. Using Bing’s approximation theorem [1, Theorem 1], we can find a piecewise linear $\delta/2$-homeomorphism $h: S \to E^3$ such that

1. $qpr \cap h(S) = h(O(F,f))$ (where $h(O(F,f)) = \{ x \in h(F) | hf(\partial \Delta) : \phi_{h(F)|h(\partial \Delta)}(x) = 1 \}$,
2. $q \in h(S)$, $r \in h(S)$,
3. $h(S)$ is in general position relative to $f(\Delta) \cup qpr$.

Proposition 5B. There is a polyhedron $K \subset B \subset E^3$ such that:

(i) K is an algebraic separator of E^3 in general position relative to qpr.
(ii) $qpr \cap (f(\Delta) \cup h(S)) = qpr \cap K$.

Proof. Let $g: \partial \Delta \to E^3$ be a piecewise linear map in general position, such that:

(i) $g(\partial \Delta) \subset h(F^o)$,
(ii) g and $h|_{\partial \Delta}$ are homotopic in $h(F)|qpr$,
(iii) $\rho(g, h|_{\partial \Delta}) < \delta/2$.

Let $\gamma: \Delta \to \Delta^o$ be a homeomorphism such that

(iv) $\rho(\gamma f, f) < \delta$,
(v) $f\gamma: \Delta \to E^3$ is piecewise linear and in general position, and $f\gamma(\Delta)$ is in general position relative to $h(S)$.
As a result of our care with δ, we can get a piecewise linear homotopy $G: \partial \Delta \times [0, 1] \to E^3$ such that

(vi) $G_0 = g, \quad G_1 = f_\gamma|_{\partial \Delta}$,
(vii) $G(\partial \Delta \times [0, 1]) \subset B|_rpr$,
(viii) $G(\partial \Delta \times (0, 1))$ is in general position relative to $h(S)$ and $f_\gamma(\Delta)$.

It is simple to check that $K = O(h(F), g(\partial \Delta)) \cup G(\partial \Delta \times [0, 1]) \cup f_\gamma(\Delta)$ satisfies the requirements.

Proposition 5C. $\| qpr \cap f(\Delta) \|$ is odd.

Proof. K is contained in B, which does not separate q and r in E^3, so by Proposition 2A $\| qpr \cap K \|$ is even. $\| qpr \cap K \| = \| qpr \cap (f(\Delta) \cup h(S)) \| = \| qpr \cap f(\Delta) \| + \| qpr \cap h(S) \|$, by condition (3) on h. $\| qpr \cap h(S) \|$ is odd since $h(S)$ is a manifold separating q and r in E^3, so $\| qpr \cap f(\Delta) \|$ is also odd.

Lemma 5B. Let S be a 2-sphere in E^3, $F \subseteq S$ a disk. Let f_1, \ldots, f_s be blisters of F in int S, and B_1, \ldots, B_s 3-cells in E^3 such that $(f_i)\cap B_i = B_i$ for each i.

Suppose D is a polyhedral disk in E^3 such that $\partial D \subset \text{int } S \cup \bigcup B_i$, $\text{int } S \cup (F \setminus \bigcup f_i(\partial \Delta)) \cup D$ retracts to $\text{int } S \cup (F \setminus \bigcup f_i(\partial \Delta))$, and $D \cap S \subseteq \bigcup O(F, f_i)$.

Then there is a disk D' in E^3 such that

(5.1) $\partial D' = \partial D$,
(5.2) $D' \subset D \cup (\bigcup B_i)$,
(5.3) $D' \subset \text{int } S$.

Proof. Suppose that we have a polyhedral disk D_j in E^3 which satisfies the following conditions:

(1) $\partial D_j = \partial D$,
(2) $D_j \subset D \cup (\bigcup B_i)$,
(3) $\text{int } S \cup (F \setminus \bigcup f_i(\partial \Delta)) \cup D_j$ retracts to $\text{int } S \cup (F \setminus \bigcup f_i(\partial \Delta))$, and $D_j \cap S \subseteq \bigcup O(F, f_i)$.

We can choose $D_0 = D$, for example, and if we had D_s we could choose $D' = D_s$.

For the proof of Lemma 5B it is, therefore, sufficient to produce D_{j+1}.

We may assume that, for each $i, f_i|_{\Delta i}$ is locally piecewise linear and in general position. The hypotheses of Theorem 4 are then satisfied by the following substitutions:

<table>
<thead>
<tr>
<th>for</th>
<th>substitute</th>
<th>for</th>
<th>substitute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_0</td>
<td>Δ</td>
<td>U_0</td>
<td>$B_{j+1} \cap \text{int } S$</td>
</tr>
<tr>
<td>f_0</td>
<td>f_{j+1}</td>
<td>D</td>
<td>D_i</td>
</tr>
</tbody>
</table>

There is, therefore, a polyhedral disk, which we shall call D_{j+1}, satisfying:

(4.1) $\partial D_{j+1} = \partial D_j$,
(4.2) $D_{j+1} \subset D_j \cup (B_{j+1} \cap \text{int } S)$,
(4.3) D_{j+1} is in general position relative to $f_{j+1}(\Delta^\circ)$,
(4.4) $O(D_{j+1}, D_{j+1} \cap f_{j+1}(\Delta)) \subset B_{j+1} \cap \text{int } S$.
From (4.1) and (4.2) it follows that \(D_{j+1} \) satisfies conditions (1)-(3); it remains to check (4).

Proposition 5D. \(D_{j+1} \cap S \subset \bigcup_{j+1 \in S} O(F, f_j) \).

Proof. (4.2) implies that \(D_{j+1} \cap S \subset \bigcup_{j+1 \in S} O(F, f_j) \), so all we need check is \(O(F, f_{j+1}) \). Suppose that \(D_{j+1} \cap O(F, f_{j+1}) \neq \emptyset \), and use (4.3) to choose a polygonal arc \(A \) with endpoints \(p \) and \(q \), such that

(i) \(A \subset D_{j+1} \),
(ii) \(q \in \partial D_{j+1} \), \(p \in O(F, f_{j+1}) \),
(iii) \(A \) is in general position relative to \(f_{j+1}(\Delta) \).

Using the facts that \(D_{j+1} \) satisfies (3) and \(\text{int } S \) is locally 0-connected [12, Theorem 5.35], we can get a polygonal arc \(A' \) with endpoints \(p' \) and \(q' \), such that

(iv) \(A' \not\subset \text{int } S \),
(v) \(p' \in O(F, f_{j+1}) \),
(vi) \(A' \cap W = A \cap W \), for some neighborhood \(W \) of \(f_{j+1}(\Delta) \) in \(\text{int } S \).

\(A' \) is in general position relative to \(f_{j+1}(\Delta) \) since \(A \) is, so Lemma 5A tells us that \(\| A' \cap f_{j+1}(\Delta) \| \) is odd. Since \(\| A' \cap f_{j+1}(\Delta) \| = \| A \cap f_{j+1}(\Delta) \| \), this means that \(p \in O(D_{j+1}, D_{j+1} \cap f_{j+1}(\Delta)) \). According to (4.4), \(p \) then lies in \(\text{int } S \); but we assumed that \(p \in S \), which is a contradiction. Therefore, \(D_{j+1} \cap O(F, f_{j+1}) = \emptyset \).

6. 2-spheres in \(E^3 \). Let \(M \) be a 3-manifold, \(S \) a 2-manifold in \(M \), and \(V \) a component of \(M \setminus S \). \(S \) satisfies condition (1) toward \(V \) at a point \(p \in S \) if, for any neighborhood \(B \) of \(p \) in \(M \), and any Cantor set \(C \) in \(S \), there is a disk \(F \subset S \cap B \) and a blister \(f \) of \(F \) in \(V \) such that \(p \in O(F, f) \subset (f)_p \subset B \) and \(f(\partial A) \cap C = \emptyset \).

Theorem 6. Let \(S \) be a 2-sphere in \(E^3 \) which satisfies condition (1) toward its interior at every point. Then \(S \) is tame from the interior.

Proof. Let \(F \subset S \) be a disk, \(U \) a neighborhood of \(F \) in \(E^3 \), and \(D \subset E^3 \) a polyhedral disk with \(\partial D \subset \text{int } S \) and \(D \cap S \subset F^o \).

Proposition 6A. To prove Theorem 6, it is sufficient to show that there is a disk \(D' \) in \(E^3 \) such that

(i) \(\partial D' = \partial D \),
(ii) \(D' \subset D \cup U \),
(iii) \(D' \subset \text{int } S \).

Proof. As Hempel has noted (in the proof of [8, Theorem 1]), this is a consequence of Bing’s proof of Theorem 1 in [3].

Proposition 6B. There is a Dehn disk \(D_0 \) in \(E^3 \) and a Cantor set \(C \) in \(S \) such that

(i) \(\partial D_0 = \partial D \),
(ii) \(D_0 \subset D \cup U \), with the singular points of \(D_0 \) contained in \(U \),
(iii) \(D_0 \subset \text{int } S \cap (F^o \cap C) \).
Proof. We can use the Tietze extension theorem to get a Dehn disk D'_0 such that $\partial D'_0 = \partial D$ and $D'_0 \subset (D \cap \text{int } S) \cup F^{\circ}$, with the singular points of D'_0 contained in F. Theorem 2.1 of [5] then gives us D_0.

Proposition 6C. There are blisters f_1, \ldots, f_s of F in int S, 3-cells B_1, \ldots, B_s in $U \setminus \partial D$, and disjoint disks G_1, \ldots, G_s in S, such that $(f_i)_p \subset B'_i$ for each i, and $D_0 \cap S = \bigcup G_i \subset \bigcup G_i \subset (\bigcup O(F, f_i)) \cup f_i(\partial \Delta)$.

Proof. For any point p in F°, we can choose a 3-cell neighborhood B in $U \setminus (\partial D \cup (S \setminus F))$. Let C be the Cantor set described in Proposition 6B; since S satisfies condition (1) toward int S at p, there is a disk $F_p \subset S \cap B \subset F$ and a blister f_p of F_p in int S such that $p \in O(F_p, f_p) = O(F, f_p) \subset (B^{\circ} \setminus f_p(\partial \Delta)) \cap C = \emptyset$. $D_0 \cap S$ is compact, so we can pick $p_1, \ldots, p_s \in F^{\circ}$ such that $D_0 \cap S \subset (\bigcup O(F, f_p)) \cup f_p(\partial \Delta)$. We let $\{f_1, \ldots, f_s\} = \{f_{p_1}, \ldots, f_{p_s}\}$, $\{B_1, \ldots, B_s\} = \{B_{p_1}, \ldots, B_{p_s}\}$, and use the fact that $D_0 \cap S \subset C$ is 0-dimensional to choose the disks G_1, \ldots, G_s.

We can use the Tietze extension theorem to show:

Proposition 6D. int $S \cup (\bigcup G_i)$ is a retract of some neighborhood V of int $S \cup (\bigcup G_i)$ in E^3.

Proposition 6E. There is a polyhedral disk D_1 in E^3 such that

(i) $\partial D_1 = \partial D$,

(ii) $D_1 \subset D \cup U$,

(iii) $S, F, \{f_1, \ldots, f_s\}, \{B_1, \ldots, B_s\}$, and $D = D_1$ satisfy the hypotheses of Lemma 5B.

Proof. The singular points of D_0 are contained in $U \cap V$, where V is as in Proposition 6D, so Dehn’s Lemma gives us a polyhedral disk $D_1 \subset D_0 \cup (U \cap V)$ with $\partial D_1 = \partial D_0$. It is simple to check that D_1 meets the requirements.

If we apply Lemma 5B to D_i, we obtain a disk D' in E^3 such that

(5.1) $\partial D' = \partial D_1 = \partial D$,

(5.2) $D' \subset D_1 \cup (\bigcup B_i) \subset D \cup U$,

(5.3) $D' \subset \text{int } S$.

D' satisfies conditions (i)-(iii) of Proposition 6A, and the proof is therefore complete.

Let M be a 3-manifold, S a 2-manifold in M, V a component of $M \setminus S$, and B a subset of M. A loop $f: \partial \Delta \to S$ can be shrunk to a point through $B \cap V$ if there is a homotopy $H_t: \partial \Delta \to M$ such that $H_0 = f$, H_1 is constant, and $H_t(\partial \Delta) \subset B \cap V$ for all $t > 0$. S is 1-LC through V at a point p in S if, for any neighborhood B of p in M, there is a neighborhood B_1 of p in $B \cap S$ such that any loop $f: \partial \Delta \to B_1$ can be shrunk to a point through $B \cap V$.

Corollary 6A. Let S be a 2-sphere in E^3 which is 1-LC through its interior at every point. Then S is tame from the interior.

Proof. This follows from the observation:
Proposition 6F. Let B be a subset of E^3, and suppose that $i: \Delta \to S$ is an embedding such that $i(\partial \Delta)$ can be shrunk to a point through $B \cap \text{int } S$. Then there is a blister f of $i(\Delta)$ in int S such that $f(\partial \Delta) = i(\partial \Delta)$ and $f(\Delta) \subseteq B$, and we have $O(F,f) = i(\Delta^0)$, for any disk $F \subseteq S$ containing $i(\Delta)$.

Let M be a 3-manifold, S a 2-manifold in M, and V a component of $M \setminus S$. A set X in S can be deformed into V if there is a homotopy $H_t: X \to M$ such that $H_0 = I$ and $\forall t > 0. \ H_t(X) \subseteq V$.

Corollary 6B. Let S be a 2-sphere in E^3 such that every Sierpinski curve in S can be deformed into int S. Then S is tame from the interior.

Proof. The following proposition is an adaptation of Theorem 14 in [6].

Proposition 6G. Let $E_1, E_2, \ldots, E_k, \ldots$ be a decreasing sequence of disks in S whose intersection is a point $p \in \bigcap E_t$, and suppose that $p \cup (\bigcup \partial E_t)$ can be deformed into int S.

Then for any open set $B \subseteq E^3$ containing E_1, there is a blister f of E_1 in int S such that $p \in O(E_1,f) = (f)_{E_1} \subseteq B$ and $f(\partial \Delta) = \partial E_k$ for some K.

Proof. Let $H_t: p \cup (\bigcup \partial E_t) \to E^3$ be a homotopy such that $H_0 = I$ and $\forall t > 0. \ H_t(p \cup (\bigcup \partial E_t)) \subseteq \text{int } S$. We may assume that $H_t(p \cup (\bigcup \partial E_t)) \subseteq B$ for each t; let B' be an open 3-cell in $B \setminus S$ containing $H_1(p)$. $H_t(\partial E_k)$ lies in B' for large enough K, and can be shrunk to a point in B'. By Proposition 6F, there is then a blister f of E_k (and hence of E_1) in int S such that $p \in E_k^0 = O(E_1,f) = (f)_{E_1} \subseteq B$ and $f(\partial \Delta) = \partial E_k$.

Proposition 6H. Let p be a point of S, C a Cantor set in S. Then p is an inaccessible point of some Sierpinski curve in S which misses C.

Proof. We just construct such a Sierpinski curve, using the fact that C is 0-dimensional.

If p is an inaccessible point of a Sierpinski curve X in S, then there is a decreasing sequence of disks $E_1, E_2, \ldots, E_k, \ldots$ in S such that $\partial E_k \subseteq X$ and $\bigcap E_k = \bigcap E_k^0 = p$. Therefore, Propositions 6G and 6H together imply that S satisfies condition (1) toward its interior at every point.

Remarks. (1) The hypothesis of Corollary 6B requires that any Sierpinski curve in S can be continuously approximated from int S. For any 2-sphere S in E^3, any Sierpinski curve X in S, and any $\delta > 0$, it follows from Bing's side approximation theorem [4, Theorem 16] that there is a δ-homeomorphism $h: X \to \text{int } S$.

(2) Theorem 6 is stated for 2-spheres in E^3, but its proof is based on a local criterion for tameness [8, Condition A], so Theorem 1 of [6] can be used with Lemma 5B to extend our results to two-sided 2-manifolds in 3-manifolds.

Bibliography

Arizona State University,
Tempe, Arizona