THE AUTOMORPHISM GROUP OF A HOMOGENEOUS ALMOST COMPLEX MANIFOLD (*)

BY

JOSEPH A. WOLF

1. Introduction. Let M be a compact simply connected manifold of nonzero Euler characteristic that carries a homogeneous almost complex structure. We determine the largest connected group $A_0(M)$ of almost analytic automorphisms of M.

Our hypotheses represent M as a coset space G/K where G is a maximal compact subgroup of the Lie group $A_0(M)$ and K is a closed connected subgroup of maximal rank in G. In §2 we collect some information, decomposing $M = M_1 \times \cdots \times M_t$ as a product of “irreducible” factors along the decomposition of G as a product of simple groups; then every invariant almost complex structure or riemannian metric decomposes and every invariant riemannian metric is hermitian relative to any invariant almost complex structure; furthermore the decomposition is independent of G in a certain sense. In §3 we choose an invariant riemannian metric and determine the largest connected groups $H_0(M_1)$ of almost hermitian isometries of the M_i. Then $A_0(M)$ is determined in §4. There it is shown that $A_0(M) = A_0(M_1) \times \cdots \times A_0(M_t)$, that $A_0(M_i) = H_0(M_i)$ if the almost complex structure on M_i is not integrable, and that $A_0(M_i) = H_0(M_i)^c$ if the almost complex structure on M_i is induced by a complex structure. $A_0(M)$ thus is a centerless semisimple Lie group whose simple normal analytic subgroups are just the $A_0(M_i)$.

2. Decomposition. Let M be an effective coset space of a compact connected Lie group G by a connected subgroup K of maximal rank. In other words $M = G/K$ is compact, simply connected and of nonzero Euler characteristic; G is a compact centerless semisimple Lie group, rank $K = \text{rank } G$, and K contains no simple factor of G. Then

\begin{align}
(2.1a) \quad G &= G_1 \times \cdots \times G_t, \quad K = K_1 \times \cdots \times K_t \quad \text{and} \quad M = M_1 \times \cdots \times M_t
\end{align}

where

\begin{align}
(2.1b) \quad G_i \text{ is simple,} \quad K_i = K \cap G_i \quad \text{and} \quad M_i = G_i/K_i.
\end{align}

G_i is a compact connected centerless simple Lie group, K_i is a connected subgroup of maximal rank, and $M_i = G_i/K_i$ is a simply connected effective coset space of nonzero Euler characteristic. The decomposition of M is unique up to order of the factors because it is determined by the decomposition of G.

Received by the editors November 5, 1966 and, in revised form, March 1, 1969.

(*) Research partially supported by N.S.F. Grants GP-5798 and GP-8008.
We call (2.1) the canonical decomposition of the coset space $M = G/K$. The factors $M_i = G_i/K_i$ are the irreducible factors of $M = G/K$. If there is just one irreducible factor, i.e. if G is simple, then we say that $M = G/K$ is irreducible.

2.2. Proposition. Let M be an effective coset space G/K where G is a compact connected Lie group and K is a connected subgroup of maximal rank. Let $M = M_1 \times \cdots \times M_t$ be the canonical decomposition into irreducible factors $M_i = G_i/K_i$.

1. The G-invariant almost complex structures J on M are just the $J_1 \times \cdots \times J_t$ where J_i is a G_i-invariant almost complex structure on M_i.

2. The G-invariant riemannian metrics ds^2 on M are just the $ds^2_1 \times \cdots \times ds^2_t$ where ds^2_i is a G_i-invariant riemannian metric on M_i; there each (M_i, ds^2_i) is an irreducible riemannian manifold, so

$$(M, ds^2) = (M_1, ds^2_1) \times \cdots \times (M_t, ds^2_t)$$

is the de Rham decomposition.

3. Let J be a G-invariant almost complex structure on M. If ds^2 is a G-invariant riemannian metric, then it is the real part of a G_i-invariant almost hermitian (for J_i) metric h on M_i and $h = h_1 \times \cdots \times h_t$ where h_i is a G_i-invariant almost hermitian (for J_i) metric on M_i and ds^2_i is the real part of h_i.

Proof. The Lie algebras decompose uniquely as direct sums $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ and $\mathfrak{g}_i = \mathfrak{k}_i + \mathfrak{m}_i$, $\mathfrak{k} = \sum \mathfrak{k}_i$ and $\mathfrak{m} = \sum \mathfrak{m}_i$, with $[\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$ and $[\mathfrak{k}_i, \mathfrak{m}_i] \subset \mathfrak{m}_i$. Let Z be the center of K, so \mathfrak{k} is the centralizer of Z in \mathfrak{g}. Then $Z = Z_1 \times \cdots \times Z_t$ where Z_i is the center of K_i and \mathfrak{k}_i is the centralizer of Z_i in \mathfrak{g}_i.

π denotes the representation of K on \mathfrak{m} and π_i is the representation of K_i on \mathfrak{m}_i. Then $\pi = \pi_1 \oplus \cdots \oplus \pi_t$. Let $X = X_1 \cup \cdots \cup X_t$ be the set of nontrivial characters on Z such that

$$(2.3a) \quad \mathfrak{m}^C = \sum_X \mathfrak{m}_x \quad \text{and} \quad \mathfrak{m}_i^C = \sum_{X_i} \mathfrak{m}_x$$

where Z acts on \mathfrak{m}_x by the character χ. Each \mathfrak{m}_x is ad (K)-stable, so K acts on \mathfrak{m}_x by a representation π_x, and

$$(2.3b) \quad \pi^C = \sum_X \pi_x \quad \text{and} \quad \pi_i^C = \sum_{X_i} \pi_x.$$

The point [7, Theorem 8.13.3] is that

$$(2.3c) \quad \text{the } \pi_x \text{ are irreducible and mutually inequivalent.}$$

We transform the complex decomposition (2.3) to a real decomposition. Let $X = S \cup T$, $S = S_1 \cup \cdots \cup S_t$ and $T = T_1 \cup \cdots \cup T_t$ where S_i consists of the nonreal characters in X_i and T_i consists of the real ones. By real partition of X we mean a disjoint $X = S' \cup S'' \cup T$ where $S'' = S'$. If $\chi \in S_i$ then $\bar{\chi} \in S_i$; thus the real partition
induces real partitions \(X_i = S'_i \cup S''_i \cup T_i \). If \(|S| = 2n\) then \(X \) has \(2^n \) real partitions. Now choose a real partition \(X = S' \cup S'' \cup T \) and define

\[
\chi \in S': K \text{ acts on } \mathfrak{M}^S = \mathfrak{M} \cap (\mathfrak{M}_x + \mathfrak{M}_y) \quad \text{by } \pi^R_x \\
\chi \in T: K \text{ acts on } \mathfrak{M}^T = \mathfrak{M} \cap \mathfrak{M}_x \quad \text{by } \pi^R_x.
\]

Then (2.3abc) becomes

\[
(2.4a) \quad \mathfrak{M} = \sum_{S'} \mathfrak{M}^R + \sum_{T} \mathfrak{M}^R \quad \text{and} \quad \mathfrak{M}_x = \sum_{S_i} \mathfrak{M}^R + \sum_{T_i} \mathfrak{M}^R,
\]

\[
(2.4b) \quad \pi = \sum_{S'} \pi^R + \sum_{T} \pi^R \quad \text{and} \quad \pi_i = \sum_{S_i} \pi^R + \sum_{T_i} \pi^R,
\]

\[
(2.4c) \quad \text{the } \pi^R \text{ are real-irreducible and mutually inequivalent.}
\]

Let \(A \) be the commuting algebra of \(\pi \) on \(\mathfrak{M} \). By (2.4c), \(A = \sum_C + \sum R \), for \(\pi^R \) has commuting algebra \(C \) if \(\chi \in S' \), \(R \) if \(\chi \in T \). Invariant almost complex structures are in obvious correspondence with elements of square \(-I\) of the commuting algebra, which now are seen to exist if and only if \(T \) is empty, and (1) follows. Similarly, the decomposition of \(ds^2 \) in (2), and the existence and decomposition of \(h \) in (3), are immediate.

It remains only to show the \((M_i, ds^2)\) irreducible as riemannian manifolds in (2). That fact is known [3, §5.1], but in our present context we can give a short proof for the convenience of the reader. If \((M_i, ds^2)\) reduces, then it is a riemannian product \(M' \times M'' \) because it is complete and simply connected, so we have an \(\text{ad} (K_i) \)-stable decomposition \(\mathfrak{M}_x = \mathfrak{M}' \oplus \mathfrak{M}'' \) with the properties

\[
[\mathfrak{M}', \mathfrak{M}''] \subset \mathfrak{g}_i, \quad \mathfrak{M}'^C = \sum_x \mathfrak{M}'_x, \quad \mathfrak{M}''^C = \sum_x \mathfrak{M}_x, \quad X_i = X' \cup X''.
\]

Here \(X' \) and \(X'' \) are disjoint and self conjugate. If \(\chi' \in X' \) and \(\chi'' \in X'' \) with \([\mathfrak{M}'_x, \mathfrak{M}_x] \neq 0 \), then \(\chi'\chi'' = 1 \) so \(\chi' = \chi'' \in X'' \) which is absurd. Thus \([\mathfrak{M}', \mathfrak{M}''] = 0\), and it follows that the simple Lie algebra \(\mathfrak{g}_i \) is direct sum of ideals

\[
\mathfrak{g}' = \{ \mathfrak{g}_i \cap [\mathfrak{M}', \mathfrak{M}''] \} + \mathfrak{M}' \quad \text{and} \quad \mathfrak{g}'' = \{ \mathfrak{g}_i \cap [\mathfrak{M}'', \mathfrak{M}''] \} + \mathfrak{M}''.
\]

That being absurd, irreducibility is proved. Q.E.D.

2.5. Remark. In the notation of the proof of Proposition 2.2, \(M \) has a \(G \)-invariant almost complex structure if and only if \(X = S \), and then those structures \(J \) correspond to the real partitions \(X = S' \cup S'' \) by: \(\sum_{S'} \mathfrak{M}_x \) and \(\sum_{S''} \mathfrak{M}_x \) are the \(\sqrt{-1} \) and \(-\sqrt{-1} \) eigenspaces of \(J \) on \(\mathfrak{M}^C \).

3. Almost hermitian isometries. Let \(M \) be a manifold with an almost hermitian metric \(h \). Then \(h = ds^2 + (-1)^{1/2} \omega \) where the riemannian metric \(ds^2 \) is the real part of \(h \) and \(\omega (u, v) = ds^2(u, Jv) \) is the imaginary part; that determines the almost complex structure \(J \). By almost hermitian isometry of \((M, h)\) we mean a diffeomorphism that preserves \(h \), i.e. that is a riemannian isometry of \((M, ds^2)\) which preserves \(J \).
Let $I(M)$ denote the (Lie) group of all isometries of (M, ds^2), $H(M)$ the closed subgroup consisting of those isometries that preserve J. Then $H(M)$ is the (Lie) group of all almost hermitian isometries of (M, h). In particular its identity component $H_0(M)$ is an analytic subgroup of the identity component $I_0(M)$ of $I(M)$. If $(M, h) = (M_1, h_1) \times \cdots \times (M_t, h_t)$ hermitian product, then the de Rham decomposition says that $I_0(M)$ preserves each noneuclidean factor, so those factors are stable under $H_0(M)$.

Let $M = G/K$ as in Proposition 2.2. Let h be a G-invariant almost hermitian metric on M. The canonical decomposition induces $(M, h) = (M_1, h_1) \times \cdots \times (M_t, h_t)$ hermitian product where each $(M_i, ds_i^2), ds_i^2 = \Re h_i$ is an irreducible noneuclidean riemannian manifold. Thus $H_0(M) = H_0(M_1) \times \cdots \times H_0(M_t)$, and $H(M)$ is generated by its subgroup $H(M_1) \times \cdots \times H(M_t)$ and permutations of mutually isometric (M_i, h_i); so its determination is more or less reduced to the case where $M = G/K$ is irreducible. There the result is

3.1. PROPOSITION. Let M be an effective coset space G/K where G is a compact connected simple Lie group and K is a connected subgroup of maximal rank. Let h be a G-invariant almost hermitian metric on M, so $M = H_0(M)/B$ where $G = H_0(M)$ and $B \cap G = K$. If $G \neq H_0(M)$, then (M, h) is an irreducible hermitian symmetric space of compact type listed below.

<table>
<thead>
<tr>
<th>Case</th>
<th>G</th>
<th>K</th>
<th>$H_0(M)$</th>
<th>B</th>
<th>(M, h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G_2</td>
<td>$U(2)$</td>
<td>$SO(7)$</td>
<td>$SO(5) \times SO(2)$</td>
<td>5-dimensional complex quadric</td>
</tr>
<tr>
<td>2</td>
<td>$Sp(r)/Z_2$</td>
<td>$Sp(r-1)/U(1)$</td>
<td>$SU(2r)/Z_{2r}$</td>
<td>$U(2r-1)$</td>
<td>complex projective $(2r-1)$-space</td>
</tr>
<tr>
<td>3</td>
<td>$SO(2r+1)$</td>
<td>$U(r)$</td>
<td>$SO(2r+2)/Z_2$</td>
<td>$U(r+1)/Z_2$</td>
<td>unitary structures on R^{2r+2}</td>
</tr>
<tr>
<td>3'</td>
<td>$Spin(7)/Z_2$</td>
<td>$U(3)$</td>
<td>$SO(8)/Z_2$</td>
<td>$SO(6) \cdot SO(2)$</td>
<td>6-dimensional complex quadric</td>
</tr>
</tbody>
</table>

Remark 1. In the exceptional cases above, K is not R-irreducible on the tangent space, so M has another G-invariant almost hermitian metric for which $G = H_0(M)$.

Remark 2. The proof is easily reduced to the case where B is the centralizer of a toral subgroup of $H_0(M)$, and then the result can be extracted from [2, Table 5] and the Bott-Borel-Weil Theorem. But here it is convenient to reduce the proof to some classifications of Oniščik [4].

Proof. As M has nonzero Euler characteristic, B has maximal rank in $H_0(M)$, so $H_0(M)/B = G/K$ is one of the following entries in Oniščik’s list [4, Table 7].

(i) $A_{2n-1}/A_{2n-2} \cdot T = C_n/C_{n-1} \cdot T$ (our Case 2),
(ii) $B_3/B_2 \cdot T = G_2/A_1 \cdot T$ (our Case 1),
(iii) $B_3/D_3 = G_2/A_2$ (B_3 does not preserve J here),

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The assertions follow with the observation that \(H_0(M)/B \) is an irreducible hermitian symmetric coset space of compact type in each of the admissible cases. Q.E.D.

4. Almost analytic automorphisms. Let \(M \) be a manifold with almost complex structure \(J \). By almost analytic automorphism of \(M \), we mean a diffeomorphism of \(M \) which preserves \(J \). The set of all such diffeomorphisms forms a group \(A(M) \). If \(M \) is compact, then \([1]\) in the compact-open topology, \(A(M) \) is a Lie transformation group of \(M \). We denote its identity component by \(A_0(M) \). If, further, we have an almost hermitian metric on \(M \), then \(H(M) \) is a compact subgroup of \(A(M) \). That will be our main tool in studying \(A(M) \).

4.1. Theorem. Let \(M=G/K \) be a simply connected effective coset space of nonzero Euler characteristic where \(G \) is a compact connected Lie group. Let \(J \) be a \(G \)-invariant almost complex structure on \(M \). Let \(M=M_1 \times \cdots \times M_t \) be the canonical decomposition into irreducible coset spaces, and decompose \(J=J_1 \times \cdots \times J_t \) where \(J_i \) is a \(G_i \)-invariant almost complex structure on \(M_i \). Then

1. \(A_0(M)=A_0(M_1) \times \cdots \times A_0(M_t) \).

2. \(M \) has a \(G \)-invariant riemannian metric \(ds^2=ds_1^2 \times \cdots \times ds_t^2 \) for which \(H_0(M) \) is a maximal compact subgroup of \(A_0(M) \).

3. If \(J_i \) is integrable then \(A_0(M_i)=H_0(M_i) \). If \(J_i \) is not integrable then \(A_0(M_i)=H_0(M_i) \).

Proof. For the second statement, enlarge \(G \) to a maximal compact subgroup \(H \) of \(A_0(M) \) and choose an \(H \)-invariant riemannian metric \(ds^2 \) on \(M \). Then \(ds^2=ds_1^2 \times \cdots \times ds_t^2 \) as required, by Proposition 2.2, and \(H=H_0(M) \) by construction.

We simplify notation for the proofs of the first and third statement by enlarging \(G \) to \(H_0(M) \) and writing \(A \) for \(A_0(M) \). That does not change the canonical decomposition of \(M \), for the latter is the de Rham decomposition for \(ds^2 \) according to Proposition 2.2. Now \(G/K=M=A/B \) where \(G \subset A \) is a maximal compact subgroup and \(K=G \cap B \).

We check that \(A \) is a centerless semisimple Lie group. If \(L \) is a closed normal analytic subgroup of \(A \) with \(G \cap L \) discrete, then \(G \cdot L \subset A \) is effective on

\[(G \cdot L)/(K \cdot L) = M, \text{ so } L = \{1\}.
\]

Let \(L \) be the radical of \(A \): now \(A \) is semisimple. Let \(\mathfrak{g} \) be the orthocomplement of \(\mathfrak{g} \) in a maximal compactly embedded subalgebra of \(\mathfrak{g} \): now \(A \) has finite center, so the centerless group \(G \) contains the center of \(A \), so \(A \) is centerless.

Let \(A^\alpha \), \(1 \leq \alpha \leq r \), be the simple normal analytic subgroups of \(A \). So \(A=A^1 \times \cdots \times A^r \) with \(A^\alpha \) centerless simple. Now \(G=G^1 \times \cdots \times G^r \), \(K=K^1 \times \cdots \times K^r \) and \(M=M^1 \times \cdots \times M^r \) where

\[G^\alpha = G \cap A^\alpha, \quad K^\alpha = K \cap G^\alpha, \quad M^\alpha = G^\alpha/K^\alpha.\]
If \(\alpha \neq \beta \) then \(A^\alpha \) acts trivially on \(M^\beta \). For every \(a \in A^\alpha \) centralizes the transitive transformation group \(G^\beta \) of \(M^\beta \), hence induces some transformation \(\tilde{a} \) of \(M^\beta \) that is trivial or fixed point free. As \(A^\alpha \) is connected, \(\tilde{a} \) is homotopic to 1 so its Lefschetz number is the (nonzero) Euler characteristic of \(M^\beta \); that shows \(a = 1 \). Now \(M^a = A^a/B^a \), \(B^a = B \cap A^a \), with \(B = B^1 \times \cdots \times B^r \).

According to Oniščik [5, Table 1] the only possibilities for \(G^a/K^a = M^a = A^a/B^a \), \(A^\alpha \) noncompact, are given in the following table.

<table>
<thead>
<tr>
<th>(A^\alpha)</th>
<th>(M^a = G^a/K^a)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SL(2n, R)/Z_2)</td>
<td>(SO(2n)/SO(2n_1) \times \cdots \times SO(2n_\alpha))</td>
<td>(n = \sum n_i > 1)</td>
</tr>
<tr>
<td>(SL(2n+1, R))</td>
<td>(SO(2n+1)/SO(2n_1) \times \cdots \times SO(2n_\alpha-1) \times SO(2n_\alpha+1))</td>
<td>(n = \sum n_i)</td>
</tr>
<tr>
<td>(GL(n, Q)/Z_2)</td>
<td>(Sp(n)/Sp(n_1) \times \cdots \times Sp(n_\alpha) \times U(1)^a)</td>
<td>(n = q + \sum n_i)</td>
</tr>
<tr>
<td>(SO(1, 2n-1)/Z_2)</td>
<td>(SO(2n-1)/SO(2n_1) \times \cdots \times SO(2n_\alpha) \times U(m_1) \times \cdots \times U(m_\beta))</td>
<td>(n - 1 = \sum n_i + \sum m_i)</td>
</tr>
<tr>
<td>(E_6, E_7, E_8)</td>
<td>(Sp(4)/Sp(2) \times Sp(2)) and (Sp(4)/[Sp(1)])</td>
<td>none</td>
</tr>
<tr>
<td>((G^\alpha)^C)</td>
<td>(G^a/K^a) where (K^a) is the centralizer of a nontrivial toral subgroup of (G^a)</td>
<td>(G^\alpha) compact centerless simple</td>
</tr>
</tbody>
</table>

Note that \(G^a \) is simple except in Case 1 with \(n = 2 \). There \(M^a \) is the product of two Riemann spheres, so \(A^\alpha \) is the product of two copies of \(SL(2, C)/Z_2 \), contradicting the table entry for \(A^\alpha \). Thus we always have \(G^a \) simple, so each \(M^a \) is an \(M_a \), and the first statement of our theorem is proved with \(A^a = A_0(M^a) \).

Now we may, and do, assume \(M \) irreducible. Thus \(A \) and \(G \) are simple.

4.2. Lemma. The invariant almost complex structure \(J \) is integrable if and only if \(A = G^C \). In that case \(B \) is a complex parabolic subgroup of \(A \) and \(J \) is induced either from the natural complex structure on \(A/B \) or from the conjugate structure.

Proof of lemma. Let \(J \) be integrable; we check \(\Theta \subseteq \mathfrak{g} \). For if \(\xi \in \Theta \) and \(\xi^* \) denotes the holomorphic vector field induced on \(M \), then \(J(\xi^*) = \mathfrak{g} \) is holomorphic. Thus \(\Theta \subseteq \mathfrak{g} \) acts on \(M \) by \(\xi + i\eta \rightarrow \xi^* + J(\eta^*) \), and this action integrates to \(G^C \) because \(M \) is compact; that shows \(G^C \subseteq A \) so \(\Theta \subseteq \mathfrak{g} \).

Let \(\mathfrak{g} = \Theta \). As \(\Theta \) is its own normalizer in \(\mathfrak{g} \) because it has maximal rank, \(\Theta \) is its own normalizer in \(\mathfrak{g} \), and \(B \) is a \(\mathfrak{R} \)-algebraic subgroup of \(A \). Thus \(A \) has an Iwasawa decomposition \(GSN \) with \(G = KSN \). As \(\mathfrak{g} = \Theta \), the group \(S^C \) is a complex Cartan subgroup of \(A \), so \(N \) is a complex unipotent subgroup. Now \(K^C S^C N \) is the complex group generated by \(B \) and it has intersection \(K \) with \(G \); thus \(M = A/B \rightarrow A/K^C S^C N = G/K \) is trivial so \(B \) is a complex subgroup of \(A \). As \(A/B \) is compact now \(B \) is a complex parabolic subgroup.
Decompose $B = B' \cdot B^u$ into reductive and unipotent parts. Let Z be the identity component of the center of B', complex subtorus of S^c. Let D be the set of characters $\chi \neq 1$ on Z that are restrictions of positive roots, so $\mathfrak{B}^u = \sum D \mathfrak{A}_\chi$. Define $\mathfrak{B}^{-u} = \sum D \mathfrak{A}_{-\chi}$ so that \mathfrak{A} is the direct sum of its subspaces \mathfrak{B}', \mathfrak{B}^u and \mathfrak{B}^{-u}. $\mathfrak{B} \cap (\mathfrak{B}^u + \mathfrak{B}^{-u})$ represents the real tangent space of M, and $\mathfrak{B}^u + \mathfrak{B}^{-u}$ represents the complexified tangent space. If $\pm \chi \in D$, then \mathfrak{A}_χ is an irreducible representation space of B', so J acts on \mathfrak{A}_χ either as $\sqrt{-1}$ or as $-\sqrt{-1}$. Let \mathfrak{U}^+ (resp. \mathfrak{U}^-) denote the image in $\mathfrak{B}/\mathfrak{B}$ of the \mathfrak{U}_χ, $-\chi \in D$, on which J acts as $\sqrt{-1}$ (resp. $-\sqrt{-1}$). Then $\text{ad}(\mathfrak{B}) \cdot \mathfrak{U}^+ \subseteq \mathfrak{U}^+$ by invariance of J under B. If v is the restriction to Z of the highest root, then $\mathfrak{A}/\mathfrak{B} = \sum n \geq 0 \text{ad}(\mathfrak{B})^n \cdot (\mathfrak{A}_-, \text{mod } \mathfrak{B})$, because \mathfrak{A} is simple, so $\mathfrak{A}/\mathfrak{B}$ is the one of \mathfrak{U}^+ or \mathfrak{U}^- into which \mathfrak{A}_- maps. Thus either J acts on \mathfrak{B}^{-u} as $\sqrt{-1}$ and the natural complex structure of A/B induces J, or J acts on \mathfrak{B}^{-u} as $-\sqrt{-1}$ and the natural structure induces $-J$. In either case J is integrable.

In general suppose $\mathfrak{B}^C \subseteq \mathfrak{A}$. Then $M = G^C/B \cap G^C$ is a complex flag manifold on which A is the largest connected group of analytic automorphisms. Thus A is a centerless complex semisimple group, hence the complexification of its maximal compact subgroup G.

Lemma 4.2 is proved.

4.3. Lemma. If B^C is parabolic in A^C, then J is integrable so $A = G^C$.

Proof of lemma. J is an element of square $-I$ in the commuting algebra of $\text{ad}(\mathfrak{B})$ on $\mathfrak{A}/\mathfrak{B}$. Thus it induces an element J^C of square $-I$ in the commuting algebra of $\text{ad}(\mathfrak{B}^C)$ on $\mathfrak{A}_C/\mathfrak{B}_C$. Now suppose B^C parabolic in A^C, so $M^C = A^C/B^C$ is compact and of positive Euler characteristic with invariant almost complex structure J^C.

If A is complex then $A = G^C$ and Lemma 4.2 says that J is integrable. Thus we may assume A not complex so that A^C is simple. Then Lemma 4.2 says that J^C is integrable, and in fact that either J^C or $-J^C$ is induced by the natural complex structure on A^C/B^C. Replace J by $-J$ if necessary; that does not alter integrability of J, but it replaces J^C by $-J^C$, allowing us to assume J^C induced by the natural complex structure of A^C/B^C.

Decompose $B = B' \cdot B^u$ into reductive and unipotent parts, so $\mathfrak{B} = \mathfrak{B}' + \mathfrak{B}^u$ and $\mathfrak{A} = \mathfrak{B} + \mathfrak{B}^{-u}$ where $\mathfrak{B}^{\pm u}$ are subalgebras normalized by \mathfrak{B}'. Let \mathfrak{B}^{-u} represent the real tangent space to M. Note that J^C acts on $(\mathfrak{B}^{-u})^C$ as $\sqrt{-1}$. That contradicts our arrangement that the action of J^C on $(\mathfrak{B}^{-u})^C$ is induced by the action of J on \mathfrak{B}^{-u}. Thus A cannot be noncomplex. Lemma 4.3 is proved.

We complete the proof of Theorem 4.1. As in the second paragraph of the proof of Lemma 4.2, B is a real algebraic subgroup of A, so there is a semidirect product decomposition $B = B' \cdot B^u$ into reductive and unipotent parts. If rank $B' < \text{rank } A$, then any Cartan subalgebra of \mathfrak{A} has an element ξ not contained in any isotropy subalgebra of \mathfrak{A} on M so it induces a nonvanishing vector field ξ^* on M. The
existence of a nonvanishing vector field ξ^* says that M has Euler characteristic zero. That contradiction proves rank $B'=\text{rank } A$.

Let σ be the Cartan involution of \mathfrak{g} with fixed point set \mathfrak{g} and let $\mathfrak{g} = \mathfrak{g} + \mathfrak{h}$ be the Cartan decomposition. We may assume $\sigma(\mathfrak{h}') = \mathfrak{h}'$, so $\mathfrak{h}' = \mathfrak{k} + (\mathfrak{h} \cap \mathfrak{h}')$. That gives compact real forms

$$\mathfrak{K} = \mathfrak{g} + \sqrt{-1} \mathfrak{h} \quad \text{and} \quad \mathfrak{K}' = \mathfrak{h} + \sqrt{-1} (\mathfrak{h} \cap \mathfrak{h}').$$

Let A_c denote the centerless group with Lie algebra \mathfrak{g}_c and let B'_c be the analytic subgroup for \mathfrak{K}'. Then rank $B'_c = \text{rank } B' = \text{rank } A = \text{rank } A_c$ tells us that $X = A_c/B'_c$ is a compact simply connected manifold of positive Euler characteristic. If $A = G$ then $B = B' = K$, so $A_c = G$ and $B'_c = K$, whence $X = M$.

As in the second paragraph of the proof of Lemma 4.2 we have Iwasawa decompositions $A = GSN$ and $B = KSN$. Choose a torus subgroup $T \subset K$ such that $H = T \times S \subset B'$ is a Cartan subgroup of A. Let Δ be the root system. Now $\Delta = D \cup E \cup -E$ disjoint, and $\mathfrak{g} = \mathfrak{h}' \oplus \mathfrak{b}^u + \mathfrak{b}^{-u}$ direct, where

$$\mathfrak{b}' = \mathfrak{h} + \mathfrak{h}' \quad \text{and} \quad \mathfrak{b}^u = \mathfrak{h} \cap \{ \sum_{\phi \in \Delta^+} \mathfrak{g}_\phi \}, \quad \mathfrak{b}^{-u} = \mathfrak{h} \cap \{ \sum_{\phi \in \Delta^-} \mathfrak{g}_\phi \}.$$

Observe that σ interchanges \mathfrak{b}^u and \mathfrak{b}^{-u}. For $\mathfrak{b}^u \cap N$ because $N = N' \cdot B^u$ where $B' = KSN'$, and the dual space of \mathfrak{n} has an ordering such that

$$\mathfrak{g}^C = \sum_{\phi|_S > 0} \mathfrak{g}_\phi, \quad \text{and} \quad \phi|_S > 0 \iff \sigma \phi|_S < 0.$$

View the invariant almost complex structure J of M as an element of square $-I$ in the commuting algebra of $\text{ad}(\mathfrak{h})$ on $\mathfrak{h}/\mathfrak{g}$, hence in the commuting algebra of $\text{ad}(\mathfrak{b}')$ on $\mathfrak{b}' \subset \mathfrak{b}/\mathfrak{h}$; then extend J to an element J' of square $-I$ in the commuting algebra of $\text{ad}(\mathfrak{b}')$ on $\mathfrak{b}^u + \mathfrak{b}^{-u}$ by the formula

$$J'(\xi + \eta) = \sigma J(\sigma \xi) + J(\eta) \quad \text{where } \xi \in \mathfrak{b}^u, \eta \in \mathfrak{b}^{-u}.$$

Now J' is an A-invariant σ-invariant almost complex structure on A/B', so [6, Proposition 7.7] it defines an A_c-invariant σ-invariant almost complex structure on A_c/B'_c. We have proved that $X = A_c/B'_c$ has an invariant almost complex structure.

Suppose $A \neq G$. Note that [6, Theorem 4.10] eliminates lines 5 and 6 of the Oniščik table above, so either $A = G^C$ or A is absolutely simple and of classical type. Suppose $A \neq G^C$ so A_c is simple and of classical type. Then [6, Theorem 4.10] shows that B'_c is the centralizer of a torus in A_c. Let \mathfrak{g}_c denote the center of \mathfrak{K}'. Then $\sigma(\mathfrak{K}') = \mathfrak{K}'$ implies $\sigma(\mathfrak{g}_c) = \mathfrak{g}_c$, so $\mathfrak{g}_c = U + (-1)^{1/2} \mathfrak{b}$ with $U \subset \mathfrak{h}$ and $\mathfrak{b} \subset \mathfrak{b} \cap \mathfrak{b}'$. Now \mathfrak{b}' has center $\mathfrak{g} = \mathfrak{h} + \mathfrak{b} \subset \mathfrak{b} \cap \mathfrak{g}$, and \mathfrak{b}' is the centralizer of \mathfrak{g} in \mathfrak{g}. We order the root system Δ so that a root $\phi > 0$ whenever $\phi|_S > 0$ and $\phi|_S > 0$. Then \mathfrak{g}^C contains the Borel subalgebra $\mathfrak{g}_c + \sum_{\phi > 0} \mathfrak{g}_\phi$ of \mathfrak{g}^C for that ordering, so \mathfrak{g}_c is a parabolic subalgebra of \mathfrak{g}^C. Then Lemma 4.3 says $A = G^C$. We have proved that $A \neq G$ implies $A = G^C$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
If J is integrable then Lemma 4.2 says $A = GC$. If J is not integrable then Lemma 4.2 says $A \neq GC$, so we cannot have $A \neq G$, and that forces $A = G$. Theorem 4.1 is proved. Q.E.D.

4.3. Remark. Theorem 4.1 extends the scope of [8, Theorem 17.4(3)], but that result remains incomplete because, as remarked at the end of [8, §17], it is not known whether

$$A_0(E_6/\text{ad } SU(3))$$

is E_6 rather than E_6^C or whether

$$A_0(SO(n^2-1)/\text{ad } SU(n))$$

is $SO(n^2-1)$ rather than $SO(n^2-1, C)$, $SL(n^2-1, R)$, or $SO(1, n^2-1)$.

REFERENCES