THE AUTOMORPHISM GROUP OF A HOMOGENEOUS ALMOST COMPLEX MANIFOLD (*)

BY

JOSEPH A. WOLF

1. Introduction. Let M be a compact simply connected manifold of nonzero Euler characteristic that carries a homogeneous almost complex structure. We determine the largest connected group $A_0(M)$ of almost analytic automorphisms of M.

Our hypotheses represent M as a coset space G/K where G is a maximal compact subgroup of the Lie group $A_0(M)$ and K is a closed connected subgroup of maximal rank in G. In §2 we collect some information, decomposing $M = M_1 \times \cdots \times M_t$ as a product of "irreducible" factors along the decomposition of G as a product of simple groups; then every invariant almost complex structure or riemannian metric decomposes and every invariant riemannian metric is hermitian relative to any invariant almost complex structure; furthermore the decomposition is independent of G in a certain sense. In §3 we choose an invariant riemannian metric and determine the largest connected groups $H_0(M_i)$ of almost hermitian isometries of the M_i. Then $A_0(M)$ is determined in §4. There it is shown that $A_0(M) = A_0(M_1) \times \cdots \times A_0(M_t)$, that $A_0(M_i) = H_0(M_i)$ if the almost complex structure on M_i is not integrable, and that $A_0(M_i) = H_0(M_i)^c$ if the almost complex structure on M_i is induced by a complex structure. $A_0(M)$ thus is a centerless semisimple Lie group whose simple normal analytic subgroups are just the $A_0(M_i)$.

2. Decomposition. Let M be an effective coset space of a compact connected Lie group G by a connected subgroup K of maximal rank. In other words $M = G/K$ is compact, simply connected and of nonzero Euler characteristic; G is a compact centerless semisimple Lie group, rank $K = \text{rank } G$, and K contains no simple factor of G. Then

(2.1a) \[G = G_1 \times \cdots \times G_t, \quad K = K_1 \times \cdots \times K_t \quad \text{and} \quad M = M_1 \times \cdots \times M_t \]

where

(2.1b) \[G_i \text{ is simple,} \quad K_i = K \cap G_i \quad \text{and} \quad M_i = G_i/K_i. \]

G_i is a compact connected centerless simple Lie group, K_i is a connected subgroup of maximal rank, and $M_i = G_i/K_i$ is a simply connected effective coset space of nonzero Euler characteristic. The decomposition of M is unique up to order of the factors because it is determined by the decomposition of G.

Received by the editors November 5, 1966 and, in revised form, March 1, 1969.

(*) Research partially supported by N.S.F. Grants GP-5798 and GP-8008.

535
We call (2.1) the canonical decomposition of the coset space $M = G/K$. The factors $M_i = G_i/K_i$ are the irreducible factors of $M = G/K$. If there is just one irreducible factor, i.e. if G is simple, then we say that $M = G/K$ is irreducible.

2.2. Proposition. Let M be an effective coset space G/K where G is a compact connected Lie group and K is a connected subgroup of maximal rank. Let $M = M_1 \times \cdots \times M_t$ be the canonical decomposition into irreducible factors $M_i = G_i/K_i$.

1. The G-invariant almost complex structures J on M are just the $J_1 \times \cdots \times J_t$ where J_i is a G_i-invariant almost complex structure on M_i.

2. The G-invariant riemannian metrics ds^2 on M are just the $ds_1^2 \times \cdots \times ds_t^2$ where ds_i^2 is a G_i-invariant riemannian metric on M_i; there each (M_i, ds_i^2) is an irreducible riemannian manifold, so $$(M, ds^2) = (M_1, ds_1^2) \times \cdots \times (M_t, ds_t^2)$$ is the de Rham decomposition.

3. Let J be a G-invariant almost complex structure on M. If ds^2 is a G-invariant riemannian metric, then it is the real part of a G-invariant almost hermitian (for J) metric h on M, and $h = h_1 \times \cdots \times h_t$ where h_i is a G_i-invariant almost hermitian (for J_i) metric on M_i and ds_i^2 is the real part of h_i.

Proof. The Lie algebras decompose uniquely as direct sums $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ and $\mathfrak{g}_i = \mathfrak{k}_i + \mathfrak{m}_i$, $\mathfrak{k} = \sum \mathfrak{k}_i$ and $\mathfrak{m} = \sum \mathfrak{m}_i$ with $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$ and $[\mathfrak{k}_i, \mathfrak{m}_i] \subseteq \mathfrak{m}_i$. Let Z be the center of K, so \mathfrak{k} is the centralizer of Z in \mathfrak{g}. Then $Z = Z_1 \times \cdots \times Z_t$ where Z_i is the center of K_i and \mathfrak{k}_i is the centralizer of Z_i in \mathfrak{g}_i.

π denotes the representation of K on \mathfrak{m} and π_i is the representation of K_i on \mathfrak{m}_i. Then $\pi = \pi_1 \oplus \cdots \oplus \pi_t$. Let $X = X_1 \cup \cdots \cup X_t$ be the set of nontrivial characters on Z such that

\begin{equation}
(2.3a) \quad \mathfrak{m}_C = \sum_x \mathfrak{m}_x \quad \text{and} \quad \mathfrak{m}_i^C = \sum_{x_i} \mathfrak{m}_x
\end{equation}

where Z acts on \mathfrak{m}_x by the character x. Each \mathfrak{m}_x is ad (K)-stable, so K acts on \mathfrak{m}_x by a representation π_x, and

\begin{equation}
(2.3b) \quad \pi^C = \sum_x \pi_x \quad \text{and} \quad \pi_i^C = \sum_{x_i} \pi_x.
\end{equation}

The point [7, Theorem 8.13.3] is that

\begin{equation}
(2.3c) \quad \text{the } \pi_x \text{ are irreducible and mutually inequivalent.}
\end{equation}

We transform the complex decomposition (2.3) to a real decomposition. Let $X = S \cup T$, $S = S_1 \cup \cdots \cup S_t$ and $T = T_1 \cup \cdots \cup T_t$ where S_i consists of the nonreal characters in X_i and T_i consists of the real ones. By real partition of X we mean a disjoint $X = S' \cup S'' \cup T$ where $S'' = S'$. If $x \in S_i$ then $\bar{x} \in S_i$; thus the real partition

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
induces real partitions $X_i = S'_i \cup S''_i \cup T_i$. If $|S| = 2n$ then X has 2n real partitions. Now choose a real partition $X = S' \cup S'' \cup T$ and define

\[\chi \in S': \text{ } K \text{ acts on } \mathcal{M}_x^R = \mathcal{M} \cap (\mathcal{M}_x + \mathcal{M}_y) \text{ by } \pi_x^R \]

\[\chi \in T: \text{ } K \text{ acts on } \mathcal{M}_x^R = \mathcal{M} \cap \mathcal{M}_y \text{ by } \pi_x^R. \]

Then (2.3abc) becomes

(2.4a) \[\mathcal{M} = \sum_{S'} \mathcal{M}_x^R + \sum_{T} \mathcal{M}_x^R \text{ and } \mathcal{M}_i = \sum_{S_i} \mathcal{M}_x^R + \sum_{T_i} \mathcal{M}_y^R, \]

(2.4b) \[\pi = \sum_{S'} \pi_x^R + \sum_{T} \pi_x^R \text{ and } \pi_i = \sum_{S_i} \pi_x^R + \sum_{T_i} \pi_y^R, \]

(2.4c) \[\text{the } \pi_x^R \text{ are real-irreducible and mutually inequivalent.} \]

Let A be the commuting algebra of π on \mathcal{M}. By (2.4c), $A = \sum C + \sum R$, for π_x^R has commuting algebra C if $\chi \in S'$, R if $\chi \in T$. Invariant almost complex structures are in obvious correspondence with elements of square $-I$ of the commuting algebra, which now are seen to exist if and only if T is empty, and (1) follows. Similarly, the decomposition of ds^2 in (2), and the existence and decomposition of h in (3), are immediate.

It remains only to show the (M, ds^2) irreducible as riemannian manifolds in (2). That fact is known [3, §5.1], but in our present context we can give a short proof for the convenience of the reader. If (M, ds^2) reduces, then it is a riemannian product $M' \times M''$ because it is complete and simply connected, so we have an ad (K_i)-stable decomposition $\mathcal{M}_i = \mathcal{M}' \oplus \mathcal{M}''$ with the properties

\[[\mathcal{M}', \mathcal{M}''] \subset \mathfrak{g}_i, \quad \mathcal{M}'^C = \sum_{\mathcal{M}_x} \mathcal{M}_x, \quad \mathcal{M}''^C = \sum_{\mathcal{M}_y} \mathcal{M}_y, \quad X_i = X' \cup X''. \]

Here X' and X'' are disjoint and self conjugate. If $\chi' \in X'$ and $\chi'' \in X''$ with $[\mathcal{M}_x', \mathcal{M}_x''] \neq 0$, then $\chi' \chi'' = 1$ so $\chi'' = \bar{\chi}' \in X''$ which is absurd. Thus $[\mathcal{M}', \mathcal{M}''] = 0$, and it follows that the simple Lie algebra \mathfrak{g}_i is direct sum of ideals

\[\mathfrak{g}' = \{ \mathfrak{g}_i \cap [\mathcal{M}', \mathcal{M}'] \} + \mathcal{M}' \text{ and } \mathfrak{g}'' = \{ \mathfrak{g}_i \cap [\mathcal{M}'', \mathcal{M}'] \} + \mathcal{M}''. \]

That being absurd, irreducibility is proved. Q.E.D.

2.5. Remark. In the notation of the proof of Proposition 2.2, M has a G-invariant almost complex structure if and only if $X = S$, and then those structures J correspond to the real partitions $X = S' \cup S''$ by: $\sum_{S'} \mathcal{M}_x$ and $\sum_{S''} \mathcal{M}_y$ are the $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of J on \mathcal{M}^C.

3. Almost hermitian isometries. Let M be a manifold with an almost hermitian metric h. Then $h = ds^2 + (-1)^{1/2} \omega$ where the riemannian metric ds^2 is the real part of h and $\omega(u, v) = -ds^2(u, Jv)$ is the imaginary part; that determines the almost complex structure J. By almost hermitian isometry of (M, h) we mean a diffeomorphism that preserves h, i.e. that is a riemannian isometry of (M, ds^2) which preserves J.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let $I(M)$ denote the (Lie) group of all isometries of (M, ds^2), $H(M)$ the closed subgroup consisting of those isometries that preserve J. Then $H(M)$ is the (Lie) group of all almost hermitian isometries of (M, h). In particular its identity component $H_0(M)$ is an analytic subgroup of the identity component $I_0(M)$ of $I(M)$. If $(M, h) = (M_1, h_1) \times \cdots \times (M_t, h_t)$ hermitian product, then the de Rham decomposition says that $I_0(M)$ preserves each noneuclidean factor, so those factors are stable under $H_0(M)$.

Let $M = G/K$ as in Proposition 2.2. Let h be a G-invariant almost hermitian metric on M. The canonical decomposition induces $(M, h) = (M_1, h_1) \times \cdots \times (M_t, h_t)$ hermitian product where each (M_i, ds_i^2), $ds_i^2 = \text{Re } h_i$, is an irreducible noneuclidean riemannian manifold. Thus $H_0(M) \times H_0(M_2) \times \cdots \times H_0(M_t)$, and $H(M)$ is generated by its subgroup $H(M_1) \times \cdots \times H(M_t)$ and permutations of mutually isometric (M_i, h_i); so its determination is more or less reduced to the case where $M = G/K$ is irreducible. There the result is

3.1. PROPOSITION. Let M be an effective coset space G/K where G is a compact connected simple Lie group and K is a connected subgroup of maximal rank. Let h be a G-invariant almost hermitian metric on M, so $M = H_0(M)/B$ where $G' = H_0(M)$ and $B \cap G = K$. If $G \neq H_0(M)$, then (M, h) is an irreducible hermitian symmetric space of compact type listed below.

<table>
<thead>
<tr>
<th>Case</th>
<th>G</th>
<th>K</th>
<th>$H_0(M)$</th>
<th>B</th>
<th>(M, h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G_2</td>
<td>$U(2)$</td>
<td>$SO(7)$</td>
<td>$SO(5) \times SO(2)$</td>
<td>5-dimensional complex quadric</td>
</tr>
<tr>
<td>2</td>
<td>$Sp(r)/Z_2$</td>
<td>$Sp(r-1)\cdot U(1)$</td>
<td>$SU(2r)/Z_{2r}$</td>
<td>$U(2r-1)$</td>
<td>complex projective $(2r-1)$-space</td>
</tr>
<tr>
<td>3</td>
<td>$SO(2r+1)$</td>
<td>$U(r)$</td>
<td>$SO(2r+2)/Z_2$</td>
<td>$U(r+1)/Z_2$</td>
<td>unitary structures on \mathbb{R}^{2r+2}</td>
</tr>
<tr>
<td>3'</td>
<td>$Spin(7)/Z_2$</td>
<td>$U(3)$</td>
<td>$SO(8)/Z_2$</td>
<td>$SO(6)\cdot SO(2)$</td>
<td>6-dimensional complex quadric</td>
</tr>
</tbody>
</table>

Remark 1. In the exceptional cases above, K is not R-irreducible on the tangent space, so M has another G-invariant almost hermitian metric for which $G = H_0(M)$.

Remark 2. The proof is easily reduced to the case where B is the centralizer of a toral subgroup of $H_0(M)$, and then the result can be extracted from [2, Table 5] and the Bott-Borel-Weil Theorem. But here it is convenient to reduce the proof to some classifications of Oniščik [4].

Proof. As M has nonzero Euler characteristic, B has maximal rank in $H_0(M)$, so $H_0(M)/B = G/K$ is one of the following entries in Oniščik’s list [4, Table 7].

(i) $A_{2n-1}/A_{2n-2} \cdot T = C_n/C_{n-1} \cdot T$ (our Case 2),
(ii) $B_3/A_2 \cdot T = G_2/A_1 \cdot T$ (our Case 1),
(iii) $B_3/D_3 = G_2/A_2$ (B_3 does not preserve J here),
(iv) $D_{n+1}/A_n \cdot T = B_n/A_{n-1} \cdot T$ (our Case 3),
(v) $D_4/D_3 \cdot T = B_3/A_2 \cdot T$ (our Case 3').

The assertions follow with the observation that $H_0(M)/B$ is an irreducible hermitian symmetric coset space of compact type in each of the admissible cases. Q.E.D.

4. Almost analytic automorphisms. Let M be a manifold with almost complex structure J. By almost analytic automorphism of M, we mean a diffeomorphism of M which preserves J. The set of all such diffeomorphisms forms a group $A(M)$. If M is compact, then $[1]$ in the compact-open topology, $A(M)$ is a Lie transformation group of M. We denote its identity component by $A_0(M)$. If, further, we have an almost hermitian metric on M, then $H(M)$ is a compact subgroup of $A(M)$. That will be our main tool in studying $A(M)$.

4.1. Theorem. Let $M = G/K$ be a simply connected effective coset space of nonzero Euler characteristic where G is a compact connected Lie group. Let J be a G-invariant almost complex structure on M. Let $M = M_1 \times \cdots \times M_t$ be the canonical decomposition into irreducible coset spaces, and decompose $J = J_1 \times \cdots \times J_t$ where J_i is a G_i-invariant almost complex structure on M_i. Then

1. $A_0(M) = A_0(M_1) \times \cdots \times A_0(M_t)$.
2. M has a G-invariant riemannian metric $ds^2 = ds_1^2 \times \cdots \times ds_t^2$ for which $H_0(M)$ is a maximal compact subgroup of $A_0(M)$.
3. If J_i is integrable then $A_0(M_i) = H_0(M_i)^c$. If J_i is not integrable then $A_0(M) = H_0(M)$.

Proof. For the second statement, enlarge G to a maximal compact subgroup H of $A_0(M)$ and choose an H-invariant riemannian metric ds^2 on M. Then $ds^2 = ds_1^2 \times \cdots \times ds_t^2$ as required, by Proposition 2.2, and $H = H_0(M)$ by construction.

We simplify notation for the proofs of the first and third statement by enlarging G to $H_0(M)$ and writing A for $A_0(M)$. That does not change the canonical decomposition of M, for the latter is the de Rham decomposition for ds^2 according to Proposition 2.2. Now $G/K = M = A/B$ where $G \subset A$ is a maximal compact subgroup and $K = G \cap B$.

We check that A is a centerless semisimple Lie group. If L is a closed normal analytic subgroup of A with $G \cap L$ discrete, then $G \cdot L \subset A$ is effective on

$$(G \cdot L)/(K \cdot L) = M,$$

so $L = \{1\}$.

Let L be the radical of A: now A is semisimple. Let \mathfrak{g} be the orthocomplement of \mathfrak{g} in a maximal compactly embedded subalgebra of \mathfrak{g}: now A has finite center, so the centerless group G contains the center of A, so A is centerless.

Let A^α, $1 \leq \alpha \leq r$, be the simple normal analytic subgroups of A. So $A = A^1 \times \cdots \times A^r$ with A^α centerless simple. Now $G = G^1 \times \cdots \times G^r$, $K = K^1 \times \cdots \times K^r$ and $M = M^1 \times \cdots \times M^r$ where

$$G^\alpha = G \cap A^\alpha, \quad K^\alpha = K \cap G^\alpha, \quad M^\alpha = G^\alpha/K^\alpha.$$
If \(\alpha \neq \beta \) then \(A^\alpha \) acts trivially on \(M^\beta \). For every \(a \in A^\alpha \) centralizes the transitive transformation group \(G^\beta \) of \(M^\beta \), hence induces some transformation \(\tilde{a} \) of \(M^\beta \) that is trivial or fixed point free. As \(A^\alpha \) is connected, \(\tilde{a} \) is homotopic to 1 so its Lefschetz number is the (nonzero) Euler characteristic of \(M^\beta \); that shows \(\tilde{a} = 1 \). Now \(M^\alpha = A^\alpha / B^\alpha \), \(B^\alpha = B \cap A^\alpha \), with \(B = B_1 \times \cdots \times B^n \).

According to Oniščik [5, Table 1] the only possibilities for \(G^\alpha / K^\alpha = M^\alpha = A^\alpha / B^\alpha \), \(A^\alpha \) noncompact, are given in the following table.

<table>
<thead>
<tr>
<th>(A^\alpha)</th>
<th>(M^\alpha = G^\alpha / K^\alpha)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SL(2n, \mathbb{R}) / \mathbb{Z}_2)</td>
<td>(SO(2n_1) \times \cdots \times SO(2n_\alpha)) (n = \sum n_i > 1)</td>
<td></td>
</tr>
<tr>
<td>(SL(2n+1, \mathbb{R}))</td>
<td>(SO(2n_1) \times \cdots \times SO(2n_{n-1}) \times SO(2n_\alpha+1)) (n = \sum n_i)</td>
<td></td>
</tr>
<tr>
<td>(GL(n, \mathbb{Q}) / \mathbb{Z}_2)</td>
<td>(Sp(n_1) \times \cdots \times Sp(n_\alpha) \times U(1)^n) (n = q + \sum n_i)</td>
<td></td>
</tr>
<tr>
<td>(SO(1, 2n-1) / \mathbb{Z}_2)</td>
<td>(SO(2n) \times \cdots \times SO(2n_\alpha) \times U (m_1) \times \cdots \times U (m_j)) (n-1 = \sum m_1 + \sum m_j)</td>
<td></td>
</tr>
<tr>
<td>(E_6, E_7)</td>
<td>(Sp(4) \times Sp(2) \times Sp(2)) and (Sp(4) / [Sp(1)]^4)</td>
<td>none</td>
</tr>
<tr>
<td>(E_6, F_4)</td>
<td>(F_4 / Sp(4), F_4 / Spin(8), F_4 / U(4)) and (F_4 / [SU(2)]^4)</td>
<td>none</td>
</tr>
<tr>
<td>((G^\alpha)^C)</td>
<td>(G^\alpha / K^\alpha) where (K^\alpha) is the centralizer of a nontrivial toral subgroup of (G^\alpha)</td>
<td></td>
</tr>
</tbody>
</table>

Note that \(G^\alpha \) is simple except in Case 1 with \(n = 2 \). There \(M^\alpha \) is the product of two Riemann spheres, so \(A^\alpha \) is the product of two copies of \(SL(2, \mathbb{C}) / \mathbb{Z}_2 \), contradicting the table entry for \(A^\alpha \). Thus we always have \(G^\alpha \) simple, so each \(M^\alpha \) is an \(M_\alpha \), and the first statement of our theorem is proved with \(A^\alpha = A_0(\alpha) \).

Now we may, and do, assume \(M \) irreducible. Thus \(A \) and \(G \) are simple.

4.2. **Lemma.** The invariant almost complex structure \(J \) is integrable if and only if \(A = G^C \). In that case \(B \) is a complex parabolic subgroup of \(A \) and \(J \) is induced either from the natural complex structure on \(A / B \) or from the conjugate structure.

Proof of lemma. Let \(J \) be integrable; we check \(\Theta^C \subset \mathcal{U} \). For if \(\xi \in \Theta \) and \(\xi^* \) denotes the holomorphic vector field induced on \(M \), then \(J(\xi^*) \) is holomorphic. Thus \(\Theta^C \) acts on \(M \) by \(\xi + i\eta \to \xi^* + J(\eta^*) \), and this action integrates to \(G^C \) because \(M \) is compact; that shows \(G^C \subset A \) so \(\Theta^C \subset \mathcal{U} \).

Let \(\mathcal{U} = \Theta^C \). As \(\Theta \) is its own normalizer in \(\Theta \) because it has maximal rank, \(\Theta \) is its own normalizer in \(\mathcal{U} \), so \(B \) is an \(R \)-algebraic subgroup of \(A \). Thus \(A \) has an Iwasawa decomposition \(GSN \) with \(B = KSN \). As \(\mathcal{U} = \Theta^C \), the group \(SC \) is a complex Cartan subgroup of \(A \), so \(N \) is a complex unipotent subgroup. Now \(K^C SC \) is the complex group generated by \(B \) and it has intersection \(K \) with \(G \); thus \(M = A / B \to A / K^C SC N = G / K \) is trivial so \(B \) is a complex subgroup of \(A \). As \(A / B \) is compact now \(B \) is a complex parabolic subgroup.
Decompose $B = B'^{\cdot}B'^{\cdot}$ into reductive and unipotent parts. Let Z be the identity component of the center of B', complex subtorus of S'. Let D be the set of characters $\chi \neq 1$ on Z that are restrictions of positive roots, so $\mathbb{B}^u = \sum D \mathfrak{H}_\chi$. Define $\mathbb{B}^{-u} = \sum D \mathfrak{H}_{-\chi}$ so that \mathfrak{H} is the direct sum of its subspaces \mathbb{B}^r, \mathbb{B}^u and \mathbb{B}^{-u}.

$(\mathfrak{g} \cap (\mathbb{B}^u + \mathbb{B}^{-u}))$ represents the real tangent space of M, and $\mathfrak{g}^u + \mathfrak{g}^{-u}$ represents the complexified tangent space. If $\pm \chi \in D$, then \mathfrak{H}_χ is an irreducible representation space of B', so J acts on \mathfrak{H}_χ either as $\sqrt{-1}$ or as $-\sqrt{-1}$. Let \mathfrak{h}^+ (resp. \mathfrak{h}^-) denote the image in $\mathfrak{g}^{/\mathbb{B}}$ of the $\mathfrak{g}^{/\mathbb{B}}_{-\chi}$, on which J acts as $\sqrt{-1}$ (resp. $-\sqrt{-1}$). Then $\text{ad} (\mathfrak{g}) \cdot \mathfrak{h}^+ \subseteq \mathfrak{h}^+$ by invariance of J under B. If v is the restriction to Z of the highest root, then $\mathfrak{g}^{/\mathbb{B}} = \sum_{n \geq 0} \text{ad} (\mathfrak{g})^n (\mathfrak{g}^{/\mathbb{B}}_{-v})$, because \mathfrak{g} is simple, so \mathfrak{H}/\mathbb{B} is the one of \mathfrak{h}^+ or \mathfrak{h}^- into which \mathfrak{H}_{-v} maps. Thus either J acts on \mathfrak{g}^{-u} as $\sqrt{-1}$ and the natural complex structure of A/B induces J, or J acts on \mathfrak{g}^{-u} as $-\sqrt{-1}$ and the natural structure induces $-J$. In either case J is integrable.

In general suppose $\mathfrak{g}^C \subset \mathfrak{g}$. Then $M = G^C/B \cap G^C$ is a complex flag manifold on which A is the largest connected group of analytic automorphisms. Thus A is a centerless complex semisimple group, hence the complexification of its maximal compact subgroup G.

Lemma 4.2 is proved.

4.3. Lemma. If B^C is parabolic in A^C, then J is integrable so $A = G^C$.

Proof of lemma. J is an element of square $-I$ in the commuting algebra of \text{ad} (\mathfrak{g}) on \mathfrak{g}/\mathbb{B}. Thus it induces an element J^C of square $-I$ in the commuting algebra of \text{ad} (\mathfrak{g}^C) on $\mathfrak{g}^{C/\mathbb{B}^C}$. Now suppose B^C parabolic in A^C, so $M^C = A^C/B^C$ is compact and of positive Euler characteristic with invariant almost complex structure J^C.

If A is complex then $A = G^C$ and Lemma 4.2 says that J is integrable. Thus we may assume A not complex so that A^C is simple. Then Lemma 4.2 says that J^C is integrable, and in fact that either J^C or $-J^C$ is induced by the natural complex structure on A^C/B^C. Replace J by $-J$ if necessary; that does not alter integrability of J, but it replaces J^C by $-J^C$, allowing us to assume J^C induced by the natural complex structure of A^C/B^C.

Decompose $B = B'^{\cdot}B'^{\cdot}$ into reductive and unipotent parts, so $\mathbb{B} = \mathbb{B}^r + \mathbb{B}^u$ and $\mathfrak{H} = \mathfrak{H} + \mathfrak{H}^{-u}$ where $\mathbb{B}^{\pm u}$ are subalgebras normalized by \mathbb{B}. Let \mathbb{B}^{-u} represent the real tangent space to M. Note that J^C acts on $(\mathbb{B}^{-u})^C$ as $\sqrt{-1}$. That contradicts our arrangement that the action of J^C on $(\mathbb{B}^{-u})^C$ is induced by the action of J on \mathbb{B}^{-u}. Thus A cannot be noncomplex. Lemma 4.3 is proved.

We complete the proof of Theorem 4.1. As in the second paragraph of the proof of Lemma 4.2, B is a real algebraic subgroup of A, so there is a semidirect product decomposition $B = B'^{\cdot}B'^{\cdot}$ into reductive and unipotent parts. If rank B'^{\cdot} $<$ rank A, then any Cartan subalgebra of \mathfrak{H} has an element ξ not contained in any isotropy subalgebra of \mathfrak{H} on M so it induces a nonvanishing vector field ξ^* on M. The
existence of a nonvanishing vector field \(\xi^* \) says that \(M \) has Euler characteristic zero. That contradiction proves rank \(B^r = \text{rank } A \).

Let \(\sigma \) be the Cartan involution of \(\mathfrak{g} \) with fixed point set \(\mathfrak{s} \) and let \(\mathfrak{a} = \mathfrak{g} + \mathfrak{b} \) be the Cartan decomposition. We may assume \(\sigma(\mathfrak{b}') = \mathfrak{b}' \), so \(\mathfrak{b}' = \mathfrak{g} + (\mathfrak{b} \cap \mathfrak{b}') \). That gives compact real forms

\[
\mathfrak{a}_c = \mathfrak{g} + \sqrt{-1} \mathfrak{b} \quad \text{and} \quad \mathfrak{b}_c = \mathfrak{g} + \sqrt{-1} (\mathfrak{b} \cap \mathfrak{b}').
\]

Let \(A_c \) denote the centerless group with Lie algebra \(\mathfrak{a}_c \) and let \(B'_c \) be the analytic subgroup for \(\mathfrak{b}_c \). Then rank \(B'_c = \text{rank } B^r = \text{rank } A = \text{rank } A_c \) tells us that \(X = A_c / B'_c \) is a compact simply connected manifold of positive Euler characteristic. If \(A = G \) then \(B = B^r = K \), so \(A_c = G \) and \(B'_c = K \), whence \(X = M \).

As in the second paragraph of the proof of Lemma 4.2 we have Iwasawa decompositions \(A = GSN \) and \(B = KSN \). Choose a torus subgroup \(T \subseteq K \) such that \(H = T \times S \subseteq B^r \) is a Cartan subgroup of \(A \). Let \(\Delta \) be the root system. Now \(\Delta = D \cup E \cup -E \) disjoint, and \(A = \mathfrak{b}' + \mathfrak{b}^u + \mathfrak{b}^{-u} \) direct, where

\[
\mathfrak{b}' = \mathfrak{g} + \mathfrak{s} \quad \text{and} \quad \mathfrak{b}^u = \mathfrak{a} \cap \left\{ \sum \mathfrak{a}_\phi \right\}, \quad \mathfrak{b}^{-u} = \mathfrak{a} \cap \left\{ \sum \mathfrak{a}_{-\phi} \right\}.
\]

Observe that \(\sigma \) interchanges \(\mathfrak{b}^u \) and \(\mathfrak{b}^{-u} \). For \(\mathfrak{b}^u \subset N \) because \(N = N' \cdot B^u \) where \(B^r = KSN' \), and the dual space of \(\mathfrak{s} \) has an ordering such that

\[
\mathfrak{a}_C = \sum_{\phi|\mathfrak{s} > 0} \mathfrak{a}_\phi, \quad \text{and} \quad \phi|\mathfrak{s} > 0 \iff \sigma \phi|\mathfrak{s} < 0.
\]

View the invariant almost complex structure \(J \) of \(M \) as an element of square \(-I\) in the commuting algebra of \(\text{ad}(\mathfrak{b}) \) on \(\mathfrak{a}/\mathfrak{b} \), hence in the commuting algebra of \(\text{ad}(\mathfrak{b}') \) on \(\mathfrak{b}^{-u} \subset \mathfrak{a}/\mathfrak{b} \); then extend \(J \) to an element \(J' \) of square \(-I\) in the commuting algebra of \(\text{ad}(\mathfrak{b}') \) on \(\mathfrak{b}^u + \mathfrak{b}^{-u} \) by the formula

\[
J'(\xi + \eta) = \sigma J(\sigma \xi) + J(\eta) \quad \text{where} \quad \xi \in \mathfrak{b}^u, \ \eta \in \mathfrak{b}^{-u}.
\]

Now \(J' \) is an \(A \)-invariant \(\sigma \)-invariant almost complex structure on \(A/B^r \), so [6, Proposition 7.7] it defines an \(A_c \)-invariant \(\sigma \)-invariant almost complex structure on \(A_c/B'_c \). We have proved that \(X = A_c/B'_c \) has an invariant almost complex structure.

Suppose \(A \neq G \). Note that [6, Theorem 4.10] eliminates lines 5 and 6 of the Oniščik table above, so either \(A = G^C \) or \(A \) is absolutely simple and of classical type. Suppose \(A \neq G^C \) so \(A_c \) is simple and of classical type. Then [6, Theorem 4.10] shows that \(B'_c \) is the centralizer of a torus in \(A_c \). Let \(\mathfrak{z}_c \) denote the center of \(\mathfrak{b}_c \). Then \(\sigma(\mathfrak{b}_c) = \mathfrak{b}_c \) implies \(\sigma(\mathfrak{z}_c) = \mathfrak{z}_c \), so \(\mathfrak{z}_c = \mathfrak{u} + \mathfrak{z}^{1/2} \mathfrak{b} \) with \(\mathfrak{u} \subseteq \mathfrak{b} \) and \(\mathfrak{z} \subseteq \mathfrak{b} \cap \mathfrak{b}' \). Now \(\mathfrak{b}' \) has center \(\mathfrak{z} = \mathfrak{u} + \mathfrak{b} \subseteq \mathfrak{z} + \mathfrak{b} = \mathfrak{z} \), and \(\mathfrak{b}' \) is the centralizer of \(\mathfrak{b} \) in \(\mathfrak{b}' \). We order the root system \(\Delta \) so that a root \(\phi > 0 \) whenever \(\phi|\mathfrak{z} > 0 \) and \(\phi|\mathfrak{z} > 0 \).

Then \(\mathfrak{b}^C \) contains the Borel subalgebra \(\mathfrak{b}_C + \sum_{\phi > 0} \mathfrak{a}_\phi \) of \(\mathfrak{a}^C \) for that ordering, so \(\mathfrak{b}^C \) is a parabolic subalgebra of \(\mathfrak{a}^C \). Then Lemma 4.3 says \(A = G^C \). We have proved that \(A \neq G \) implies \(A = G^C \).
If J is integrable then Lemma 4.2 says $A = G^C$. If J is not integrable then Lemma 4.2 says $A \neq G^C$, so we cannot have $A = G$, and that forces $A = G$. Theorem 4.1 is proved. Q.E.D.

4.3. Remark. Theorem 4.1 extends the scope of [8, Theorem 17.4(3)], but that result remains incomplete because, as remarked at the end of [8, §17], it is not known whether

$$A_0(E_6/\text{ad } SU(3))$$

is E_6 rather than E_6^C or whether

$$A_0(SO(n^2-1)/\text{ad } SU(n))$$

is $SO(n^2-1)$ rather than $SO(n^2-1, C)$, $SL(n^2-1, R)$, or $SO(1, n^2-1)$.

REFERENCES

UNIVERSITY OF CALIFORNIA,
BERKELEY, CALIFORNIA