Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Free modules over free algebras and free group algebras: The Schreier technique


Author: Jacques Lewin
Journal: Trans. Amer. Math. Soc. 145 (1969), 455-465
MSC: Primary 16.10
DOI: https://doi.org/10.1090/S0002-9947-1969-0249461-9
MathSciNet review: 0249461
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. Bergman, Commuting elements in free algebras and related topics in ring theory, Thesis, Harvard University, Cambridge, Mass., 1967.
  • [2] P. M. Cohn, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc. 57 (1961), 18-30. MR 0118743 (22:9514)
  • [3] -, Rings with a weak algorithm, Trans. Amer. Math. Soc. 109 (1963), 333-356. MR 0153696 (27:3657)
  • [4] -, Free ideal rings, J. Algebra 1 (1964), 47-69. MR 0161891 (28:5095)
  • [5] -, On free products of associative rings, J. Algebra 8 (1968), 376-383. MR 0222118 (36:5170)
  • [6] -, Free associative algebras, Bull. London Math. Soc. 1 (1969), 1-39. MR 0241460 (39:2800)
  • [7] M. J. Dunwoody, On verbal subgroups of free groups, Arch. Math. 16 (1965), 153-157. MR 0181666 (31:5893)
  • [8] A. Karrass and D. Solitar, A note on a theorem of Schreier, Proc. Amer. Math. Soc. 8 (1957), 696-697. MR 0086813 (19:248a)
  • [9] -, On free products, Proc. Amer. Math. Soc. 9 (1958), 217-221. MR 0095875 (20:2373)
  • [10] A. D. Kurosh, The theory of groups, Vol. II, Chelsea, New York, 1955.
  • [11] J. Lewin, Subrings of finite index in finitely generated rings, J. Algebra 5 (1967), 84-88. MR 0200297 (34:196)
  • [12] J. Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968), 361-364. MR 0223439 (36:6487)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16.10

Retrieve articles in all journals with MSC: 16.10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0249461-9
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society