STACKS, COSTACKS AND AXIOMATIC HOMOLOGY

BY

YUH-CHING CHEN

Let \(p: \mathcal{E} \rightarrow \mathcal{X} \) be a sheaf (espace étalé) of abelian groups. Applying singular functor \(S \) one obtains a simplicial map \(\pi: E \rightarrow X \) with \(E = S(\mathcal{E}), X = S(\mathcal{X}) \) and \(\pi = S(p) \). The fibers \(\pi^{-1}(x), x \in X \), form a "local system of groups" over \(X \) which will be called a costack of abelian groups over the simplicial set \(X \). In general, a costack is defined as a functor on \(X \), regarded as a category. This is a generalized dual of the notion of a stack defined by Spanier [5].

The main objects of this note are (1) to develop a general theory of stacks and costacks over simplicial sets, (2) to construct a semisimplicial homology theory with "variable" coefficients which is unique in the sense of Eilenberg-Steenrod. The coefficients of the homology are a costack in an abelian category. In particular, when the coefficient costack is a locally constant costack the homology becomes the usual homology with local coefficients.

There are three chapters in this note. Chapter I is devoted to a study of stacks and costacks. It is partially a preparatory chapter. In Chapter II we define homology of costacks via usual chain complexes and prove that the homology so defined can be computed by projective resolutions by introducing a generalized torsion product functor. Under the equivalence of costacks and modules, this generalized functor is essentially the genuine torsion product functor of modules. The rest of Chapter II is a preparation for Chapter III, in which a homology theory of pairs of simplicial sets over a fixed simplicial set \(K \) is defined. Results of Chapter II ensure the existence of such a theory. Chapter III concludes with a proof of the uniqueness of this homology theory. This is a generalization of Eilenberg-Steenrod uniqueness theorem [1].

The results presented in this note are a part of the author's Ph.D. thesis at the City University of New York written under the direction of Professor Alex Heller.

CHAPTER I. STACKS AND COSTACKS

1. Definitions and notations. \(X = \{X_\nu\} \) is a simplicial set (semisimplicial complex) regarded as a category with objects simplexes \(x, x', \ldots \) and morphisms \(\mu_x: x \rightarrow x' \) for incidence map \(\mu \) such that \(\mu(x) = x' \). The morphisms determined by face operators and degeneracy operators are denoted by \(d_x^i, s_x^i, \) or simply \(d, s \). A simplicial
map $f: X \to Y$ is thus a functor. If, as in [3], the simplicial set X is defined as a contravariant functor, then the associated category can be viewed as the graph of X.

Let \mathcal{A} denote a category which has a projective generator P and satisfies the properties (1) \mathcal{A} is abelian, (2) \mathcal{A} is closed under the formation of products and coproducts (sums), and (3) the product and coproduct of a family of short exact sequences in \mathcal{A} are short exact sequences in \mathcal{A}. E.g.: \mathcal{R}-modules \mathcal{M}_R, abelian groups $\mathcal{A}b$, and compact abelian groups $\mathcal{A}b^*$ (the dual of $\mathcal{A}b$) are such categories. Since the category X is small (the class of objects is a set), the functor category \mathcal{A}^X is well defined with morphisms natural maps of functors. \mathcal{A}^X satisfies the three properties of \mathcal{A} listed above.

An object $A \in \mathcal{A}^X$ is a functor $A: X \to \mathcal{A}$ which is called a precostack on X with values in \mathcal{A}). If A satisfies the condition that $A(s) = A(s_x)$ is an isomorphism for every s^i and x of X, then we say that A is a costack. Dually, prestacks and stacks are contravariant functors on X to \mathcal{A}.

2. The functors $f_\#$ and $f^\#$. A simplicial map $f: X \to Y$ induces functors $f_\#: \mathcal{A}^X \to \mathcal{A}^Y$ and $f^\#: \mathcal{A}^Y \to \mathcal{A}^X$ as follows: For every A in \mathcal{A}^X, $f_\#A = B: Y \to \mathcal{A}$ is the functor defined on objects y and morphisms μ_y of Y as

\[
By = \bigsqcup A_x, \quad B_{\mu_y} = \bigsqcup A(\mu_x),
\]

sum over all x such that $fx = y$ and over all μ_x such that $f(\mu_x) = \mu_y$. It is easy to check that $f_\#$ is a well defined functor. The functor $f^\#$ is defined by composition of functors as $f^\#B = Bf$ for B in \mathcal{A}^Y. Both $f_\#$ and $f^\#$ are exact functors and

Proposition 2.1. $f^\#$ is the adjoint of $f_\#$, i.e. there is a natural isomorphism

\[
\mathcal{A}^X(A, f^\#B) \to \mathcal{A}^Y(f_\#A, B), \quad A \in \mathcal{A}^X, B \in \mathcal{A}^Y.
\]

Proof. Let $\varphi = \{\varphi_x \mid x \in X\}$ be in $\mathcal{A}^X(A, f^\#B)$, i.e. φ is a natural map with $\varphi_x: A_x \to (f^\#B)_x$. Then, for $y \in Y$ and all $x \in X$ such that $fx = y$, the universal mapping diagram of $\bigsqcup A_x$

![Diagram](image)

shows that the correspondence $\varphi \to \psi$ with $\varphi_x = \psi_x i_x$ defines a natural isomorphism.

Since $f_\#$ and $f^\#$ are exact, we have

Corollary 2.2. $f_\#$ preserves projectives and $f^\#$ preserves injectives.

For composite simplicial map gf we have $(gf)_\# = g_\# f_\#$ and $(gf)^\# = f^\# g^\#$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
3. Projectives and generators in \mathscr{A}^X. Let Δ^n denote the simplicial analogue of the unit affine n-simplex and let δ be its nondegenerate n-simplex. For every $x \in X_n$, the correspondence $\delta \to x$ determines uniquely a simplicial map $x^\delta: \Delta^n \to X$. We shall show that the induced functor $x^\delta#: \mathscr{A}^\Delta \to \mathscr{A}^X$ (here Δ stands for Δ^n) supplies projectives of \mathscr{A}^X.

Theorem 3.1. Let $P^\Delta: \Delta^n \to \mathscr{A}$ be the constant functor with value P (a projective generator of \mathscr{A}), then P^Δ is a projective of \mathscr{A}^Δ.

Proof. For any $A \in \mathscr{A}^\Delta$,

\[
\mathscr{A}^\Delta(P^\Delta, F) \simeq \mathscr{A}(P, F\delta).
\]

For, let $\varphi = \{\varphi_\sigma | \sigma \in \Delta^n\}$ be in $\mathscr{A}^\Delta(P^\Delta, F)$, then the commutative diagram

\[
\begin{array}{ccc}
P & \xrightarrow{\varphi_\sigma} & F\delta \\
\downarrow{\varphi_\sigma} & & \downarrow{\varphi_\sigma*} \\
F\sigma & \xrightarrow{1} & F(\sigma*\delta),
\end{array}
\]

where σ^* is the incidence map of Δ^n determined by σ, shows that φ is completely determined by φ_σ and vice versa. Thus the correspondence $\varphi \to \varphi_\sigma$ gives rise to the isomorphism 3.1. This and a routine computation show that A^Δ is projective.

Theorem 3.2. $U = U = \bigsqcup_{x \in X} (x^\delta P^\Delta)$ is a projective generator of \mathscr{A}^X.

Proof. U is projective since x^δ preserves projective, and coproduct of projectives is a projective. Now, a simple computation shows that

\[
\mathscr{A}^X(U, A) \simeq \prod \mathscr{A}(P^\Delta, A^x) \simeq \prod \mathscr{A}(P, A^x).
\]

Thus $\mathscr{A}^X(U, A) \neq 0$ for any $A \neq 0$. U is a generator.

We conclude that since \mathscr{A}^X has projective generators, it has enough projectives. Thus one can do homology in \mathscr{A}^X by projective resolutions.

4. Stacks and costacks. A costack (resp. stack) as defined in §1 is a normalized precostack (resp. prestack). Since $A(d_{sx})A(s_x) = A(d_{sx}s_x) = 1$ for all $x \in X$, a precostack is normalized if and only if $A(d_{sx})$ is an isomorphism for all d_{sx}. The same holds true for stacks. In the rest of this paper, we shall leave out the dual theory for stacks.

Costacks form an abelian category \mathcal{F}^X which is an exact full subcategory of \mathscr{A}^X. It is easily shown that \mathcal{F}^X is a Serre subcategory of \mathscr{A}^X in the sense that it is closed under the formation of subobjects, quotient objects and extensions. Also, \mathcal{F}^X is closed under the formation of products and coproducts. Thus, by a theorem of Freyd [2], we have

Proposition 4.1. \mathcal{F}^X is reflective and coreflective.
\mathcal{F}^X is coreflective in the sense that for each $A \in \mathcal{A}^X$, there is $N^*A \in \mathcal{F}^X$ and a map $r: A \to N^*A$ such that for any $\overline{A} \in \mathcal{F}^X$ and any map $\varphi: A \to \overline{A}$ there is a unique map $\psi: N^*A \to \overline{A}$ with $\psi r = \varphi$. Reflectivity is defined dually.

The coreflector $N^*: \mathcal{A}^X \to \mathcal{F}^X$ is the coadjoint of the inclusion functor $J: \mathcal{A}^X \to \mathcal{F}^X$ and so preserves colimits. Since J is exact, N^* also preserves projectives. Thus

Theorem 4.2. Let $N X$ be the set of nondegenerate simplexes of X, then $U^* = N^* \coprod_{x \in N X} (x_#^{P^A})$ is a projective generator of \mathcal{F}^X.

The reflection \mathcal{A} of A is a costack defined as $\mathcal{A}x = Ax$ for $x \in N X$ and $A(sx) \simeq Ax$ for all degeneracy operators s. The reflector N_* is exact and so its coadjoint functor J preserves projectives. Hence, a projective resolution of \mathcal{A} in \mathcal{F}^X is also a projective resolution of \mathcal{A} in \mathcal{A}^X. Summarizing, we say that \mathcal{F}^X is homologically closed in \mathcal{A}^X.

5. **Generalized torsion product functor.** For each $A \in \mathcal{A}^X$, let CA be the chain complex of objects in \mathcal{A} with n-chains $\coprod_{x \in X_n} Ax$ and differential $\partial = \{\partial_n\}$ defined as

\[
\partial_n = \coprod_{x \in X_n} \left(\sum_{i=0}^{n} (-1)^i A(d^x_i) \right).
\]

The homology of CA is denoted by $H(A)$.

Theorem 5.1. On \mathcal{A}^X, H is naturally isomorphic to LH_0, the left derived functor of H_0.

Proof. To show that for every projective A of \mathcal{A}^X, $H_n(A) = 0$ for $n > 0$. Since a projective is a summand of a coproduct of copies of projective generator U, it suffices to show that $H_n(U) = 0$ for $n > 0$. This is true since $C P^\Delta = C(x_#^{P^A})$ is acyclic and so is the coproduct $U = \coprod_{x \in X} (x_#^{P^A})$.

When X has finitely many nondegenerate simplexes then the category of costacks of abelian groups over X has a small projective generator U and may be identified with the category of right R modules, R is the endomorphism ring of U; H_0 then becomes $\text{Tor}^R (\cdot, H_0(U))$.

Example. If X is a simplicial complex, then $R \approx \coprod_{\sigma \leq \tau} Z(\sigma, \tau)$, where $\sigma \leq \tau$ means σ is a face of τ, $Z(\sigma, \tau)$ is the infinite cyclic group generated by the symbol (σ, τ). Observe that the multiplication in R is defined by

\[
(\sigma, \rho)(\rho, \tau) = (\sigma, \tau); \quad (\sigma, \rho)(\rho', \tau) = 0 \quad \text{if} \quad \rho \neq \rho'.
\]

Chapter II. Homology with Variable Coefficients

6. **Homology of simplicial pairs.** (X, X') is a simplicial pair with inclusion map $i: X' \to X$. The induced functor $i#: \mathcal{A}^X \to \mathcal{A}^X$ maps $A': X' \to \mathcal{A}$ onto $i#A' = A: X \to \mathcal{A}$ with supports in X'. Precisely, $Ax = A'x$ for $x \in X'$ and $Ax = 0$ for $x \in X - X'$. $i#$ is an exact full embedding and $i#i#$ is the identity functor of \mathcal{A}^X.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Observe that \(i_\# i_\# A \) is a subobject of \(A \) with supports in \(X' \) and \(i_\# i_\# \) is an exact reflector. If we identify \(\mathcal{A}^X \) with its image under \(i_\# \), then

Proposition 6.1. \(\mathcal{A}^X \) is (identified as) a reflective Serre subcategory of \(\mathcal{A}^X \).

For every \(A \in \mathcal{A}^X \), define \(qA \) by the exact sequence \(0 \to i_\# i_\# A \to A \to qA \to 0 \). \(qA \) has supports in \(X - X' \). In fact, any object in \(\mathcal{A}^X \) with supports in \(X - X' \) is the quotient of some \(A \) by \(i_\# i_\# A \). Such objects of \(\mathcal{A}^X \) are called relative precostacks. They form a full subcategory \(q\mathcal{A}^X \) of \(\mathcal{A}^X \).

Proposition 6.2. \(q\mathcal{A}^X \) is an exact coreflective Serre subcategory of \(\mathcal{A}^X \). The coreflector \(q \) is exact.

Corollary 6.3. The functors \(i_\# \) and \(q \) preserve projective resolutions.

Similar statements are true for normalized categories \(\mathcal{A}^{X'} \), \(\mathcal{A}^X \) and \(q\mathcal{A}^X \).

Recall that for every \(A \in \mathcal{A}^X \) there associates a chain complex \(CA \), the homology of \(CA \) is denoted by \(H(A) \). For a simplicial pair \((X, X') \), define its homology with coefficients in \(A \in \mathcal{A}^X \) as \(H(X, X'; A) = H(qA) \). In particular, \(H(X; A) = H(A) \).

Proposition 7.4. \(H \) is a functor in the sense that simplicial maps \(f: (X, X') \to (Y, Y') \) and \(g: (Y, Y') \to (K, K') \) give rise to a map

\[
(gf)_*: H(X, X'; f^# B) \to H(Y, Y'; E), \quad B \in \mathcal{A}^Y.
\]
by simplicial maps \(f \), and the functor \(i_# \) induced by an inclusion map preserve normalization.

Let \(A \) be a coefficient costack, then the exact sequence \(0 \to i_#i_#A \to A \to qA \to 0 \) gives rise to

Proposition 7.1 (Exactness). To each simplicial pair \((X, X')\) is associated an exact homology sequence

\[
\cdots \to H_q(X'; i^#A) \to H_q(X; A) \to H_{q-1}(X'; i^#A) \to \cdots
\]

where \(i : X' \to X \) is the inclusion map. Moreover, if \(f : (Y, Y') \to (X, X') \) is a simplicial map of pairs, then \(f \) induces a map \(f_* \) of homology sequences of the pairs.

Let \((X; X', X'')\) be a triad with inclusions

\[
\begin{align*}
(X', X' \cap X'') & \to (X' \cup X'', X'') \to (X, X' \cup X'') \\
(X'', X' \cap X'') & \to (X' \cup X'', X'') \to (X, X' \cup X'').
\end{align*}
\]

It is easily shown that

Proposition 7.2 (Excision). The excision maps \(i \) and \(j \) induce isomorphisms

\[
i_* : H_*(X', X' \cap X''; i^#h^#A) \to H_*(X' \cup X'', X'; h^#A)
\]

\[
j_* : H_*(X'', X' \cap X''; j^#h^#A) \to H_*(X' \cup X'', X''; h^#A).
\]

The following additivity properties of \(H \) are also easy to show.

Proposition 7.3 (Additivity). Given a simplicial pair \((X, X')\) and a family \(\{X_\alpha\} \) of simplicial subsets of \(X \) with the property that \(X = X' \cup (\bigcup X_\alpha) \) and \(X_\alpha \cap X_\beta \subseteq X' \) if \(\alpha \neq \beta \). Let \(X'_\alpha = X_\alpha \cap X' \) and let \(h_\alpha : (X_\alpha, X'_\alpha) \to (X, X') \) be the inclusion map, then for any coefficient costack \(A \) we have

\[
H_*(X, X'; A) \approx \bigsqcup_\alpha H_*(X_\alpha, X'_\alpha; h_\alpha^#A).
\]

In particular, when \(X' \) is void, we have

Corollary 7.4. \(H \) is infinitely additive.

Now, for each nondegenerate simplex \(x \) of \(X \) let \(\Delta^x \) denote the simplicial subset of \(X \) determined by faces of \(x \) and let \(\tilde{\Delta}^x \) be its "boundary simplicial subset." If \(i_x : \Delta^x \to X \) denotes the inclusion map then for any costack \(A \) on \(X \) the normalized chain complex of \(q(i_x^#A) \) has zero in all dimensions \(n \) except possibly for \(n = \dim x \). Thus

Proposition 7.5. \(H_n(\Delta^x, \tilde{\Delta}^x; i_x^#A) = 0 \) for \(n \neq \dim x \).
8. Strong homotopy and deformation. For \(n = 0, 1, 2, \ldots \), let \(I_n = [n, n+1] \), the closed unit interval as simplicial set, and let \(W = \bigcup_{n=0}^\infty I_n \) be the "simplicial half line."

Lemma 8.1. For any constant costack \(E_x \) on \(X \) with value \(E \in \mathcal{A} \), the projection \(p: (X \times W, X' \times W) \to (X, X') \) defined by \(p(x, \sigma) = x \) induces a chain equivalence

\[
C(p): C(qp#E_x) \to C(E_x).
\]

Proof. Let \(\otimes: \mathcal{A} \times \mathcal{A} \to \mathcal{A} \) be the tensor functor defined by Freyd [2, p. 86] and let \(C(X, X'; Z) \) be the usual free chain complex of \((X, X')\). Then \(C(E_x) \cong E \otimes C(X, X'; Z) \) and \(C(qp#E_x) \cong E \otimes C(X \times W, X' \times W; Z) \). It is well known that \(p \) induces a chain equivalence of the free chain complexes. This gives rise to the chain equivalence (8.1).

Lemma 8.2. Let \(NX_n \) denote the set of all nondegenerate \(n \)-simplexes of \(X \). Then

\[
H^*(X \times X' - 1) \cong \bigoplus_{x \in NX_n} H^*(\Delta^x, \Delta^x).
\]

This follows immediately from Proposition 7.3.

Proposition 8.3 (Strong Homotopy). \(p: X \times W \to X \) induces isomorphism

\[
p_*: H_*(X \times W; p^#A) \to H_*(X; A)
\]

for any coefficient costack \(A \).

Proof. First, we shall show by induction that

\[
H_*(X^n \times W; p^#A) \cong H_*(X^n; A)
\]

for any nonnegative integer \(n \). The crucial point is the fact that \((p^#A)(x, \sigma) = A p(x, \sigma) = A x \) for all \(\sigma \in W \) and then \(H_*(\Delta^x, \Delta^x) \) and \(H_*(\Delta^x \times W, \Delta^x \times W) \) have constant coefficients for any fixed \(x \in NX \).

For the case \(n = 0 \), \(H_*(X^0 \times W) = \bigoplus_{x \in X_0} H_*(\Delta^x) \) is isomorphic to

\[
\bigoplus_{x \in X_0} H_*(\Delta^x)
\]

since, by Lemma 8.1, each summand \(H_*(\Delta^x \times W) \) is isomorphic to \(H_*(\Delta^x) \). Hence we have \(H_*(X^0 \times W) \cong H_*(X^0) \).

Assume inductively that \(H_*(X^r \times W) \cong H_*(X^r) \) for \(r = 1, 2, \ldots, n-1 \), and consider the commutative diagram

\[
\begin{array}{cccccc}
\cdots \to H_*(X^{n-1} \times W) & \to & H_*(X^n \times W) & \to & H_*(X^n \times W, X^{n-1} \times W) & \to & H_*(X^{n-1} \times W) & \to & \cdots \\
\downarrow 2 & & \downarrow 3 & & \downarrow 4 & & \downarrow 5 & & \\
\cdots \to H_*(X^{n-1}) & \to & H_*(X^n) & \to & H_*(X^n, X^{n-1}) & \to & H_*(X_{n-1}, X^{n-2}) & \to & \cdots
\end{array}
\]
where the maps 2 and 5 are isomorphisms. Since

$$H_\bullet(X^n \times W, X^{n-1} \times W) \simeq \bigsqcup_{x \in X_n} H_\bullet(\Delta^x \times W, \Delta^x \times W)$$

and $H_\bullet(X^n, X^{n-1}) \simeq \bigsqcup_{x \in X_n} H_\bullet(\Delta^x, \Delta^x)$ by Lemma 8.2, it follows from Lemma 8.1 that the map 4 is an isomorphism. Hence, by the five lemma, the map 3 is an isomorphism. This proves (8.4) and, of course, the case when X is finite dimensional.

Now, suppose that X is infinite dimensional with $X^0 \subset X^1 \subset X^2 \subset \cdots \subset X$. Clearly, $H_q(X^n) = H_q(X^{n-1}) = \cdots = H_q(X)$ for $n > q + 1$. This and (8.4) prove (8.3).

Corollary 8.4 (Homotopy). Let $p: X \times I \to X$ be the simplicial map defined by $p(x, \alpha) = x$ for $x \in X$ and any $\alpha \in I$, then for any $A \in \mathcal{S}X$, $p_*: H_\bullet(X \times I; p#A) \to H_\bullet(X; A)$ is an isomorphism.

For, we have retractions $X \times W \to I \times [0] \to X \times [0]$ such that $r_*r'_* = (rr')_*$ is an isomorphism.

Proposition 8.5 (Deformation). The projection $p: \bigcup_n X^n \times I_n \to X$ defined by $p(x, \alpha) = x$, where $(x, \alpha) \in X^n \times I_n$, $n = 0, 1, 2, \ldots$, induces isomorphism

$$p_*: H_\bullet(L; p#A) \to H_\bullet(X; A), \quad L = \bigcup_n X^n \times I_n.$$

Proof. Let $L^n = \bigcup_{n=0}^\infty X^n \times I$, and let $LX^n = L^n \cup (X^n \times [n + 1, \infty))$, then $L^n \subset LX^n \subset L$. Since LX^n is a deformation retract of $X^n \times W$, $H_q(LX^n) \simeq H_q(X^n \times W)$. Hence, by Proposition 8.3, $H_q(LX^n) \simeq H_q(X^n) \simeq H_q(X)$ for $n > q + 1$. Thus for any $q \geq 0$, there is $n > q + 1$ such that

$$H_q(X) \simeq H_q(LX^n) \simeq H_q(LX^{n+1}) \simeq \cdots \simeq H_q(L).$$

The proof is complete.

Chapter III. Homology Theory on \mathcal{C}_K

9. K-pairs and axioms for homology. Let K be a fixed simplicial set. A K-pair is a simplicial pair (X, X') together with a simplicial map $\varphi: X \to K$. Such a K-pair is denoted by $(X, X')_\varphi$. $(K, K')_i$ is written (K, K') and $(X, \phi)_o$ is written X_ϕ. When $\varphi = \phi^\delta: \Delta^d \to K$, the subscript ϕ^δ is abbreviated by ϕ.

Given two K-pairs $(X, X')_\varphi$ and $(Y, Y')_\psi$, a K-map $f: (X, X')_\varphi \to (Y, Y')_\psi$ is, by definition, a simplicial map $f: (X, X') \to (Y, Y')$ such that $\varphi = \psi f$. In particular, an inclusion map $i: (Y, Y') \to (X, X')$ is a K-map $i: (Y, Y')_\varphi \to (X, X')_\varphi$ for any simplicial map $\varphi: X \to K$. $(Y, Y')_\varphi$ is called a K-subpair of $(X, X')_\varphi$. We shall omit the inclusion map in the notation of a K-subpair. E.g.: write $(Y, Y')_\phi$ for $(Y, Y')_{\phi^\delta}$, X_ϕ for X_{ϕ^δ}, X^δ_ϕ for $X^\delta_{\phi^\delta}$, $(\Delta^d, \Delta^d)_\phi$ for $(\Delta^d, \Delta^d)_{\phi^\delta}$, etc.

K-pairs form a category, denoted by \mathcal{C}_K, with morphisms K-maps. Any K-pair of the form (K, K') is a terminal object (right zero object).
A homology theory on \mathcal{C}_K with values in the category \mathcal{A} is a sequence of functors $H_\bullet: \mathcal{C}_K \to \mathcal{A}$ together with a family of natural transformations $d_q: H_q(X, X')_\sigma \to H_{q-1}X_\sigma$, $q > 0$, satisfying the following axioms:

Axiom 1 (Exactness axiom). For each $(X, X')_\sigma$ with inclusion maps $X'_\sigma \subset X_\sigma \supset (X, X')_\sigma$ there is an exact triangle of $(X, X')_\sigma$,

$$H_\bullet H'_\bullet \xrightarrow{i_*} H_\bullet H_\sigma \xrightarrow{\partial} H_{\bullet-1}(X, X')_\sigma \xrightarrow{j_*} H_\bullet(X, X')_\sigma,$$

where $i_* = H_{q0}$, $j_* = H_{qj}$.

Let $j_0, j_1: (X, X') \to (X \times I, X' \times I)$ and $p: (X \times I, X' \times I) \to (X, X')$ be simplicial maps defined by $j_0x = (x, 0)$, $j_1x = (x, 1)$, and $p(x, \sigma) = x$, respectively, where $x \in X$, $\sigma \in I$. Then for any simplicial map $\varphi: X \to K$, j_0, j_1, and p are K-maps as shown in the commutative diagram

$$X \xrightarrow{j_0} X \times I \xrightarrow{p} X \xrightarrow{\varphi} K \xleftarrow{\varphi p} X \xrightarrow{\varphi} X,$$

Two K-maps $f, g: (X, X')_\sigma \to (Y, Y')_\sigma$ are K-homotopic if there is a K-map $h: (X \times I, X' \times I)_\sigma \to (Y, Y')_\sigma$, called a K-homotopy of f and g, such that $f = h j_0$, $g = h j_1$.

Axiom 2 (Homotopy axiom). p_* induced by the K-projection $p: (X \times I, X' \times I)_\sigma \to (X, X')_\sigma$ is an isomorphism, or equivalently, if f and g are K-homotopic then $f_* = g_*$.

Axiom 3 (Excision axiom). The excision maps i and j of §7 regarded as K-maps induce isomorphisms i_* and j_*.

For the dimension axiom we need the following argument: In analogy to ordinary simplicial homology theory, let C^{q-1} be the closed star of a vertex in Δ^q [1, p. 78], then $(\Delta^q; \Delta^{q-1}, C^{q-1})_\sigma$ is a proper triad with respect to H_σ. This and the exactness axiom give rise to the diagram

$$H_q(\Delta^q, \Delta^{q-1})_\sigma \xrightarrow{\partial} H_{q-1}(\Delta^{q-1})_\sigma \xrightarrow{h_*} H_{q-1}(\Delta^q, C^{q-1})_\sigma \xrightarrow{j_*^{-1}} H_{q-1}(\Delta^{q-1}, \Delta^{q-1})_\sigma,$$
where $d_\sigma = \tau$ is the ith face of $\sigma \in k$, h is an inclusion map, j is an excision map, and $F^i = j^{-1}_* h_* \partial$.

Axiom 4 (Dimension axiom). For any $x \in FX$ with $x = \sigma$, $x_\sigma^4 : H_\sigma(\Delta^\sigma, \hat{\Delta}^\sigma) \rightarrow H_\sigma(\hat{\Delta}^\sigma, \hat{\Delta}^\sigma)$ is an isomorphism and $H_\sigma(\Delta^\sigma, \hat{\Delta}^\sigma) = 0$ for $n \neq q$. If $\sigma = s^i \tau$, then F^i defined by (9.3) is an isomorphism.

Axiom 5 (Additivity axiom). Let $(X_a, X'_a)_a$ be K-subpairs of $(X, X')_a$ defined as in Proposition 7.3, then

$$H_*(X, X')_a \cong \bigoplus_{\alpha} H_*(X_a, X'_a)_a.$$

Axiom 6 (Deformation axiom). $p_* = H_*(p)$, where p is the K-map $p : L_\partial \rightarrow X_\sigma$ defined as in Proposition 8.5, is an isomorphism.

Remark. These axioms are of course modelled on those of Eilenberg-Steenrod [1] supplemented by Milnor’s additivity axiom [4]. If \mathcal{A} satisfies AB5 (exactness of directed colimits) they could be somewhat abbreviated by supposing that directed colimits were preserved. We must avoid this supposition if we are to have a selfdual theory: it is false even for group-valued cohomology, i.e. homology with values in $\mathcal{A}h^*$.

10. Existence theorem, coefficient costacks. Let A be a costack on K with values in \mathcal{A}. For each $(X, X')_a \in \mathcal{C}'_K$, let

$$(10.1) ~ H_*(X, X')_a ; A) = H_*(X, X'; q^\# A),$$

the right-hand side is the homology of the simplicial pair (X, X') with coefficients in $q^\# A$ as defined in the previous chapter.

If $f : (X, X')_a \rightarrow (Y, Y')_\psi$ is a K-map, then $f = q^\#$ and so $f^\# q^\# = q^\#$. We then have $H_*(X, X')_a ; A) = H_*(X, X'; f^\# q^\# A)$. The map $f_* : H_*(X, X'; f^\# q^\# A) \rightarrow H_*(Y, Y'; q^\# A)$ is the induced map $H_*(f : H_*(X, X')_a; A) \rightarrow H_*(Y, Y')_a; A)$. The results of Chapter II show that

Theorem 10.1 (Existence Theorem). For every costack A on K there is a homology theory H_* on \mathcal{C}'_K defined by the chain homology functor as

$$H_*(X, X')_a ; A) = H_*(q q^\# A).$$

Now, let H_* be any homology theory on \mathcal{C}'_K. The coefficient costack A of H_* is, by definition, the costack on K with $A_\sigma = H_*(\Delta^\sigma, \hat{\Delta}^\sigma)_a$ for $\sigma \in K$ and with $A(d^i) = F^i$, $A(s^i) = (F^i)^{-1}$. We observe that the coefficient costack of the homology theory H_* in the theorem is just that A.

If K is a point, a K-pair is just a pair of simplicial sets and the theory H_* in the theorem is the ordinary simplicial homology with local coefficients.

11. Uniqueness theorem. We shall show that the H_* in Theorem 10.1 is essentially the only homology theory on \mathcal{C}'_K.
Theorem 11.1 (Uniqueness Theorem). Let h_\bullet be any homology theory on \mathscr{C}_X. There is a natural isomorphism

$$h_\bullet(X, X')_\circ \cong H_\bullet((X, X')_\circ; A),$$

where A is the coefficient costack of the theory h_\bullet.

Proof. First we show (11.1) for finite dimensional case. Let $\phi = X^{-1} \subset X^1 \subset X^2 \subset \cdots \subset X' = X_\circ$ (the subscripts φ in X_φ are omitted) be the increasing filtration of X_\circ by skeletons. It is an easy consequence of the dimension axiom that the associated spectral sequence collapses and that $h_\bullet(X_\circ)$ is naturally isomorphic to the homology of the chain complex C^h with

$$C^h_q = H_q(X^{s-1}, X^s) \cong \bigoplus_x H_q(A^\varphi(x), A), \quad x \in N X_q.$$

It follows from the dimension axiom and the definition of A that

$$C^h_q \cong \bigoplus_x H_q(A^\varphi(x), A), \quad x \in N X_q.$$

Thus $C^h_q \cong \bigoplus_x (\varphi#A)_x = C_q(\varphi#A)$. From the constructions of A and C^h we observe that $C^h \cong C(\varphi#A)$ as chain complexes. Hence $h_\bullet(X_\circ) \cong H_\bullet(X_\circ; A)$. Therefore (11.1) follows from the exactness axiom and the five lemma.

Next, suppose that X is infinite dimensional. We have seen that it suffices to prove the isomorphism for the absolute case. From the first part of this proof, we see that for a fixed integer $q \geq 0$ and any integer $n > q$ there is a canonical isomorphism $h_\bullet(X^n) \cong H_\bullet(X^n; A)$. But

$$H_\bullet(X^n; A) \cong H_\bullet(X^{n+1}; A) \cong \cdots H_\bullet(X_\circ; A),$$

we have a direct system

$$h_\bullet(X^0) \xrightarrow{i^0_\bullet} h_\bullet(X^1) \xrightarrow{i^1_\bullet} h_\bullet(X^2) \xrightarrow{i^2_\bullet} \cdots$$

with isomorphisms i^n_\bullet for $n > q + 1$.

Now, use Axioms 1, 2, 3, 5, and 6 and proceed as in [4], we get a Mayer-Vietoris sequence

$$\lim_{n=0} h_\bullet(X^n) \xrightarrow{\partial'} \lim_{n=0} h_\bullet(X^n) \xrightarrow{q} h_\bullet(X_\circ)$$

with Coker $f_\circ = \lim h_\bullet(X^n)$. Dual to the Lemma 2 of [4], denote the kernel of f_\circ by $\mathcal{L}''(h_{q-1}(X^n))$ and call \mathcal{L}'' the derived functor of \lim, then there is an exact sequence

$$0 \rightarrow \lim h_\bullet(X^n) \rightarrow h_\bullet(X) \rightarrow \mathcal{L}''(h_{q-1}(X^n)) \rightarrow 0.$$
and a similar one for H_q. Apply (11.2) and (11.3), we have $L'(h_{q-1}(X^*)) = 0$ and $h_q(X_\infty) \approx H_q(X_\infty; A)$.

REFERENCES

WESLEYAN UNIVERSITY,
MIDDLETOWN, CONNECTICUT