Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the differentiability of arbitrary real-valued set functions. I.


Authors: Harvel Wright and W. S. Snyder
Journal: Trans. Amer. Math. Soc. 145 (1969), 439-454
MSC: Primary 28.16
DOI: https://doi.org/10.1090/S0002-9947-1969-0251185-9
MathSciNet review: 0251185
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Sur une classe de fonctions d'ensemble, Fund. Math. 6 (1924), 170-188.
  • [2] Casper Goffman, Real functions, Rinehart, New York, 1953. MR 0054006 (14:855e)
  • [3] Hans Hahn and Arthur Rosenthal, Set functions, Univ. of New Mexico Press, Albuquerque, New Mexico, 1948. MR 0024504 (9:504e)
  • [4] W. E. Hartnett and A. H. Kruse, Differentiation of set functions using Vitali coverings, Trans. Amer. Math. Soc. 96 (1960), 185-209. MR 0121457 (22:12195)
  • [5] Henri Lebesgue, Sur l'intégration des fonctions discontinues, Ann. Sci. École Norm. Sup. (3) 27 (1910), 361-450. MR 1509126
  • [6] Edward J. McShane, Integration, Princeton Univ. Press, Princeton, N. J., 1947. MR 0082536 (18:567a)
  • [7] M. E. Munroe, Introduction of measure and integration, Addison-Wesley, Reading, Mass., 1953. MR 0053186 (14:734a)
  • [8] Anthony P. Morse, A theory of covering and differentiation, Trans. Amer. Math. Soc. 55 (1944), 205-235. MR 0009974 (5:231g)
  • [9] C. Y. Pauc, Review #12195, Math. Reviews 22 (1961), p. 2085.
  • [10] René de Possel, Sur la derivation abstraite des fonctions d'ensembles, C. R. Acad. Sci. Paris 201 (1935), 579.
  • [11] S. Saks, Théorie de l'intégrale, Monografie Matematyczne, vol. II, PWN, Warsaw, 1933; English transl., Monografie Matematyczne, vol. VII, PWN, Warsaw, 1937; 2nd rev. ed., Dover, New York, 1964.
  • [12] A. J. Ward, On the derivation of additive functions of intervals, Fund. Math. 28 (1937), 265-279.
  • [13] R. C. Young, Functions of $ \Sigma $ defined by addition or functions of intervals in n-dimensional formulation, Math. Z. 29 (1928), 171-216.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.16

Retrieve articles in all journals with MSC: 28.16


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0251185-9
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society