THE COHOMOLOGY OF THE COMPLEX
PROJECTIVE STIEFEL MANIFOLD

BY

CARLOS ALFREDO RUIZ(1)

0. Let U_n be the unitary group of order n. We have inclusions

$$\cdots \supset U_n \supset U_{n-1} \supset \cdots U_1 \approx S^1.$$

We denote by $W_{n,n-m}$ the complex Stiefel manifold $W_{n,n-m} = U_n/U_m$ and by $Y_{n,n-m}$ the complex projective Stiefel manifold which we defined as follows: S^1, regarded as the set of complex numbers of module 1, acts by multiplication on U_n. This action being compatible with the above inclusions defines an action of S^1 on $W_{n,n-m}$ and we define $Y_{n,n-m}$ as the set of orbits.

In particular we have

$$W_{n,1} = U_n/U_{n-1} \approx S^{2n-1},$$

$$W_{n,n} = U_n,$$

$$Y_{n,n} = PU_n,$$ the projective unitary group.

In this paper we compute $(H^* Y_{n,n-m})$. Baum and Browder [1] have obtained our result in the special case $n=p^r, m=0$.

In order to state our main result we need some notation: Let ω be the generator of $H^*(CP^\infty) = \mathbb{Z}[\omega]$ and z_i the generators of $H^*(W_{n,i}) = \bigwedge (z_{m+1}, \ldots, z_n)$. Let $b_i = \text{G.C.D.}(\langle C_{n,m+1}, \ldots, C_{n,i} \rangle)$. Finally in §1, we will show there is a fibration

$$W_{n,n-m} \xrightarrow{i} Y_{n,n-m} \xrightarrow{\pi} CP^\infty$$

with $Y_{n,n-m}$ of the same homotopy type as $Y_{n,n-m}$. Then our main theorem is

Theorem A.

$$H^*(Y_{n,n-m}) = \mathbb{Z}[y]/I \otimes \bigwedge (v_m+2, \ldots, v_n), \text{ where } \pi^* \omega = y;$$

$i^*v_i = (b_{i-1}/b_i)z_i$ and I is the ideal generated by $b_iy^i, i = m+1, \ldots, n$.

In §1 we compute $H^*(Y_{n,k}; \mathbb{Z}_p)$ and $H^*(Y_{n,k}; \mathbb{Q})$ following the Gitler and Handel proof for real case [3]. In §2 we determine Ker π^* and Im i^*. In §3 we show that this information is enough to determine all relevant Bockstein homomorphisms.

Received by the editors June 13, 1969.

(1) Supported by Consejo Nacional de Investigaciones Científicas y Tecnicas de la Republica Argentina.

Copyright © 1970, American Mathematical Society
and compute the Bockstein spectral sequence for every prime p. This determines completely $H^*(Y_{n,k})$.

We wish to thank Professors M. Mahowald and S. Gitler for their helpful suggestions and comments.

1. First we construct a space $Y_{n,k}$ of the same homotopy type as $Y'_{n,k}$.

Observe that we have a principal bundle $S^1 \to W_{n,n-m} \to Y'_{n,n-m}$.

Let ξ be the associate line bundle.

Proposition 1. $\xi = \xi \oplus \xi \oplus \cdots \oplus \xi$ has $n-m$ C-linearly independent sections and it is the universal bundle for bundles n having $n-m$ C-linearly independent sections, where ξ is a line bundle.

Proof. The proof is similar to the real case given in [3].

The inclusion $U_m \subset U_n$ gives rise to a fibration of classifying spaces

\[(A) \quad W_{n,n-m} \longrightarrow BU_m \longrightarrow BU_n \]

and the transgression satisfies

\[(1) \quad \tau \bar{z}_i = \sigma_i \quad \text{where } \sigma_i \text{ is the universal Chern class.} \]

Now let γ be the canonical line bundle over CP^∞ and let f_n be the classifying map of $n\gamma$ and let

\[(B) \quad W_{n,n-m} \longrightarrow Y_{n,n-m} \longrightarrow CP^\infty \]

be the fibration induced from (A) by f_n.

It is easy to see that the bundle induced by $f_n\gamma$ is a universal bundle for the n-plane bundles satisfying the conditions of Proposition 1. Thus we have

Proposition 2. $Y_{n,n-m}$ and $Y'_{n,n-m}$ have the same homotopy type.

From (1) and naturality of Chern classes and transgression

\[(2) \quad \tau \bar{z}_i = C_{n,i} \omega_i \]

If $x \in H^*(E)$ we denote by \bar{x} (resp. \tilde{x}) its image in $H^*(E; \mathbb{Z}_p)$ (resp. $H^*(E; \mathbb{Q})$).

Let $N(p)$ be the smallest i such that $m+1 \leq i < n$ and $C_{n,i}$ is not zero, mod p.

The following theorem is similar to [3, Theorem 1.6].

Theorem 3.

\[H^*(Y_{n,n-m}; \mathbb{Z}_p) = \mathbb{Z}_p[y]/[y^{N(p)}] \otimes (\bar{x}_{m+1} \cdots \bar{x}_{N(p)}), \]

\[H^*(Y_{n,n-m}; \mathbb{Q}) = \mathbb{Q}[y]/[y^{m+1}] \otimes (\bar{x}_{m+2} \cdots \bar{x}_n), \]

where p is a prime and \mathbb{Q} is the set of rational numbers; $i^*(\bar{x}_i) = \bar{z}_i; \quad i^*(\bar{\omega}) = \bar{\gamma};$ and $i^*(\tilde{x}_i) = \tilde{z}_i, \quad i^*(\tilde{\omega}) = \tilde{\gamma}$.
Proof. Let K be a field, $K=\mathbb{Z}_p$ or $K=\mathbb{Q}$ and let N be the smallest i such that $m+1 \leq i < n$ and $C_{n,i}$ is not zero in K.

In the spectral sequence of (B) with coefficients K we have

$$E_2 = K[\omega] \otimes \wedge (z_{m+1} \cdots z_n).$$

By (2) $d_1 z_i = 0$, $r < 2i$, $d_2 z_i = \tau z_i = C_{n,i} \omega^{\tau}$, then $d_r = 0$, $r < 2N$ and then $E_2 = E_{2N}$; but

$$d_{2N} z_N = C_{n,N} \omega^N \neq 0,$$

thus, z_N does not survive in E_{2N+1} and the image of the ideal $[\omega^N]$ in E_{2N+1} is 0. Moreover, E_{2N+1} is still a tensor product:

$$E_{2N+1} \otimes E_{2N+1} = E_{2N+1}^*.$$

Now the following transgressions are zero (thus all the following differentials are zero), hence

$$E_\infty = E_{2N+1} = K[\omega]/[\omega^N] \otimes \wedge (z_{m+1} \cdots z_n).$$

The theorem now follows from Borel [2].

Corollary 4. $H^*(Y_{n,m})$ has p-torsion if and only if p divides $C_{n,m+1}$.

2. In this section we obtain the first results about $H^*(Y_{n,k})$. The key is Proposition 5 below on $\text{Ker} \ \pi^*$. In Corollary 7 we pick some elements in $H^*(Y_{n,k})$ and using them we choose new generators for $H^*(Y_{n,k}; \mathbb{Z}_p)$ and $H^*(Y_{n,k}; \mathbb{Q})$ ((7), (7')).

Proposition 5.

$$\text{Ker} \ \pi^* = [b_{m+1} \omega^{m+1}; \ldots, b_n \omega^n].$$

Corollary 6.

$$\text{Ker} \ \tilde{\pi}^* = [b_{m+1} \omega^{m+2}; \ldots, b_n \omega^{n+1}].$$

Let $c_i = b_i - 1/b_i$, $i = m+2, \ldots, n$.

Corollary 7.

$$T^{2m+1}/\text{Im} \ i^* = \mathbb{Z}, \quad T^q/\text{Im} \ i^* = 0, \quad q \geq 2n,$$

$$T^{2i-1}/\text{Im} \ i^* = \mathbb{Z}_{c_i}, \quad m+2 \leq i \leq n.$$
We recall that in the spectral sequence of (B) $E_2^{0,2i-1} \approx H^{2i-1}(W_{n,n-m})$. This isomorphism carries the subgroup $E_2^{0,2i-1}$ onto T^{2i-1}, the subgroup of transgressive elements. Also $E_2^{0,0} \approx H^0(CP^\infty)$ and this isomorphism induces the isomorphism of quotient groups $E_2^{0,0} \approx H^0(CP^\infty)/\ker 2^i \pi^*$. Moreover, via these isomorphisms, τ corresponds to $d_2^{0,2i-1}$ and

$$\text{im } d_2^{0,2i-1} \approx \ker 2^i \pi^*/\ker 2^i \pi^* \subset H^2i(CP^\infty)/\ker 2^i \pi^*.$$

Finally, τ induces an isomorphism

$$T^{i-1}/\text{im } i^* \approx \ker^i \pi^*/\ker^i \pi^*.$$

Consider the diagram:

$$
\begin{array}{ccc}
H^*(W_{n,n-m}) & \xleftarrow{i^*} & H^*(Y_{n,n-m}) \\
\downarrow{\theta} & & \downarrow{\theta} \\
H^*(W_{n,n-m}; A) & \xleftarrow{i^*_A} & H^*(Y_{n,n-m}; A) \\
\end{array}
$$

(C)

$$
\begin{array}{ccc}
H^*(W_{n,n-m}) & \xleftarrow{\pi^*} & H^*(Y_{n,n-m}) \\
\downarrow{\theta} & & \downarrow{\theta} \\
H^*(W_{n,n-m}; A) & \xleftarrow{\pi^*_A} & H^*(Y_{n,n-m}; A) \\
\end{array}
$$

If $A = \mathbb{Z}_p$, then Theorem 2 and $i^* \circ \pi^* = 0$ yield

(5) \hspace{1cm} \text{Ker } i^*_A = [\bar{y}], \\
(6) \hspace{1cm} \text{Ker } \pi^*_A = [\omega^{N(p)}].$

If $A = \mathbb{Q}$, we have

(5') \hspace{1cm} \text{Ker } i^*_A = [\bar{y}], \\
(6') \hspace{1cm} \text{Ker } \pi^*_A = [\omega^{m+1}].$

Proof of Proposition 5. The spectral sequence of (B) is trivial through E_{2m+2}. Thus $E_2^{2m+2,0} \approx H^{2m+2}(CP^\infty)$ and $\ker^q \pi^* = 0, q \leq 2m + 2$. From (2) and (3) we obtain

$$\text{Ker }^q \pi^* = 0, \quad q < 2m + 2 \quad \text{and} \quad \text{Ker }^{2m+2} \pi^* = [C_{n,m+1}\omega^{m+1}]^{2m+2}.$$

Applying (2) repeatedly we have

$$[b_{m+1}\omega^{m+1}, \ldots, b_n\omega^n] \subset \text{Ker } \pi^* \subset H^*(CP^\infty).$$

For the other inclusion, put $b_i = ap^r$, where p does not divide a. We use diagram (C) with $A = \mathbb{Z}_p$, if $p^r\omega^s$ belongs to Ker π^*, $s < r$ and c divides a, then $p^r\omega^s\theta(\omega)^r$ belongs to Ker π^*_A, but it is not 0 because c is not a divisor of 0 in \mathbb{Z}_p. On the other hand in the spectral sequence of (B) with coefficients \mathbb{Z}_p, $p^r \omega^k = C_{n,k}\omega^k = 0, \quad k < i,$

because p^r divides $C_{n,k}$ for those k. Thus, the spectral sequence is trivial through $2i$ and then Ker$^{2i} \pi^*_A = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof of Corollary 6. Follows from (3) and Proposition 5.

Proof of Corollary 7. First part follows from (4), second part follows trivially from first part.

The elements v_i are not unique, we will choose a fixed set of such elements arbitrarily.

In diagram (C) with $Z_p = A$, we have:

(i) if p does not divide c_i, $\theta v_i = c_i x_i + u_i$, $m + 2 \leq i \leq n$ where $u_i \in \text{Ker } i^*_p$;

(ii) if p does divide c_i, then $\theta v_i \in \text{Ker } i^*_p$.

Let I be $I = \{i; p \text{ does not divide } c_i, m + 2 \leq i \leq n\}$. Let $J = \{j; j \notin I, m + 1 \leq j \leq n\}$. Then $I = \{i; b_i \text{ is divided by the same power of } p \text{ as } b_{i-1}\}$.

The important situation occurs when i belongs to J. For example, $m + 1$ and $N(p)$ are the smallest and the greatest elements of J.

We will change the generators of $H^*(Y_{n,n-m}; Z_p)$ to the following

$$c_i x_i = \theta v_i, \quad i \in I,$$
$$x_i = \bar{x}_i, \quad i \in J, i \neq N(p);$$

then we obtain:

$$H^*(Y_{n,n-m}; Z_p) = Z_p[Y]/[Y^{N(p)}] \otimes \wedge (x_{m+1}, \ldots, x_{N(p)}, \ldots, x_n)$$

where

$$\theta v_i = c_i x_i, \quad i \in I; \quad i^*_p x_i = \bar{z}_i, \quad m+1 \leq i \leq n, \quad i \neq N(p) \quad \text{and} \quad \pi^*_p(\bar{\omega}) = \bar{y}.$$

Again in diagram (C), this time with $A = Q$, we have

$$\theta v_i = c_i w_i, \quad m+2 \leq i \leq n.$$

We define $c_i w_i = \theta v_i$, $m + 2 \leq i \leq n$ and we obtain

$$H^*(Y_{n,n-m}; Q) = Q[Y]/[Y^{m+1}] \otimes \wedge (w_{m+2}, \ldots, w_n)$$

where

$$\theta v_i = c_i w_i, \quad i^*_p w_i = \bar{z}_i, \quad \pi^*_p(\bar{\omega}) = \bar{y}.$$

3. Next, we compute the Bockstein spectral sequence of the couple

$$H^*(Y_{n,n-m}) \xrightarrow{(p)^*} H^*(Y_{n,n-m})$$

$$\delta \quad \theta$$

$$H^*(Y_{n,n-m}; Z_p)$$

It follows from (7) that

$$E_1 = H^*(Y_{n,n-m}; Z_p) = Z_p[Y]/[Y^n] \otimes \wedge (x_{m+1} \cdots \bar{x}_{N(p)} \cdots x_n)$$

and from (7') that

$$E_\infty = H^*(Y_{n,n-m})/\text{Torsion} \otimes Z_p = Z_p[Y]/[Y^{m+1}] \otimes (w_{m+2}, \ldots, w_n).$$
Recall that the differentials are Bockstein homomorphisms β, and an element $x \in E_1$, belongs to $\text{Im } \theta$ if and only if
\begin{equation}
\beta_r x = 0 \text{ for all } r.
\end{equation}

An element $y \in H^*(Y_{n,n-m})$ has torsion p^r, that is $p^*ay = 0$ where p does not divide a, if and only if $\theta y \notin \text{Im } \beta_r$ for $j < r$, but
\begin{equation}
\theta y \in \text{Im } \beta_r.
\end{equation}

First we will give some easy results:
If $x \in E_r$, call $\phi(x)$ its image in E_∞, then
\begin{equation}
\phi(y) = \tilde{y}; \quad \phi(x_i) = w_i, \quad i \in I.
\end{equation}

By (7) and (8)
\begin{equation}
\beta_r(\tilde{y}) = 0, \quad \beta_i(x_i) = 0, \quad \text{all } r, i \in I.
\end{equation}

By (10), since $w_i \neq 0$,
\begin{equation}
x_i \notin \text{Im } \beta_r, \quad \text{all } r, i \in I.
\end{equation}

We arrange J so that $m+1 = i(0) < i(1) < \cdots < i(j) < \cdots < i(t) = N(p)$ and put $b_{i(j)} = p^r a_j$, where p does not divide a_j; then $r(j) > r(j+1)$ and $b_i = p^r a_k$, $i(j) \leq i < i(j+1)$.

By (9) and Proposition 5:
\begin{equation}
y^i \notin \text{Im } \beta_r, \quad r < r(j), \quad y^i \in \text{Im } \beta_{r(j)}, \quad i(j) \leq i < i(j+1).
\end{equation}

Trivially
\begin{equation}
E_q^r = E_q^a, \quad q < 2i(0) - 1.
\end{equation}

Now, we will compute β_r:

LEMMA 8. The following formulae hold for every j
\begin{align}
\beta_r x_{i(j)} &= 0, \quad r < r(j), \quad \text{(15)} \\
\beta_r x_{i(j)} &= k_j y^{i(j)}, \quad k_j \in \mathbb{Z}_p, k_j \neq 0, \quad \text{(16)} \\
E_q^r &= E_q^{a(j)}, \quad q < 2i(j+1) - 1. \quad \text{(17)}
\end{align}

Proof. By (13) there is an element x such that $\beta_{r(0)} x = y^{i(0)}$ but x can only be a scalar multiple of $x_{i(0)}$, then (15) and (16) hold for $j = 0$.

By the same argument (15) and (16) hold for $j = h$ provided that (17) holds for $j = h - 1$.

In turn, (15) for every $j \leq h$ and (11) together imply (17) for $j = h$ because Bockstein homomorphisms are derivations.

COROLLARY 9. For every j
\begin{align}
\beta_r x_{i(j)} y^s &= k_j y^{i(j)+s} \neq 0, \quad 0 \leq s < i(j+1) - i(j), \quad \text{(18)} \\
\beta_r x_{i(j)} y^{i(j)+s} &= 0. \quad \text{(19)}
\end{align}
Proof. (18) follows from (16) and (17). (19) follows from (16).

We call \(u_{i(l+1)} \) the image of \(x_{(l+1)} \) in \(E_{r(l+1)+1} \).

It remains to prove that \(\beta_r = 0 \) unless \(r = r(j) \) for some \(j \). This is part of the following lemma.

Lemma 10. \(\beta_r = 0 \) unless \(r = r(j) \) and \(E_r = E_r(0) \).

We use induction. Assign \(y \) to \(y \) and \(w_i \) to \(x_i \) for \(i \in I \), \(i < i(1) \).

By (15),..., (19) and \(\dim E_\alpha \leq E_{r(0)} \), this correspondence determines an isomorphism from \(E_\alpha \) onto \(E_{r(0)} \), up to degree \(2i(1) - 2 \).

Moreover, \(\beta_r = 0 \) up to degree \(2i(1) - 2 \) unless \(r = r(0) \).

Suppose we have elements \(\tilde{u}_{i(l)} \), \(j = 1, \ldots, h \), such that:

1. \(\text{gr} \tilde{u}_{i(l)} = 2i(l) - 1 \).
2. \(\tilde{u}_{i(l)} x_i = -x_i \tilde{u}_{i(l)} \); \(\tilde{u}_{i(l)} u_{i(l)} = -\tilde{u}_{i(l)} \tilde{u}_{i(l)}, j' < j \); \((\tilde{u}_{i(l)})^2 = 0 \).
3. If we assign \(y \) to \(y \); \(w_i \) to \(x_i \) for \(i \in I \), \(i < i(j+1) \) and \(w_{i(l)} \) to \(\tilde{u}_{i(l)} \) we determine an isomorphism from \(E_\alpha \) onto \(E_{r(0)} \) up to degree \(2i(h+1) - 2 \).

Suppose besides that \(\beta_r = 0 \) up to degree \(2i(h+1) - 2 \) unless \(r = r(j), j = 0, \ldots, t-1 \).

From these assumptions and (15),..., (19) we have \(\dim E_{r(0)} = \dim E_{r(0)}^2, q \leq 2i(h+1) - 1 \) and all differentials are determined on all elements of degree \(\leq 2i(h+1) - 1 \) except \(u_k(h+1) \) belonging to \(E_{r(h+1)+1} \) and its images in \(E_r, r > r(h)+1 \).

Thus, for every \(r \), \(\beta_r u_{i(h+1)} \) must lie in the subspace of \(E_r \) spanned by \(\beta_r a \), where \(a \) ranges over products. That means \(\beta_r u_k(h+1) = 0 \) for \(r < r(h-1) \); and there is an element \(u' \) in \(E_{2i(h+1) - 1}^{r(h-1)+1} \), such that \(\beta_{r(h-1)} u' = 0 \) and \(u' \) does not belong to the subalgebra generated by elements with degree \(< 2i(h+1) - 1 \). It is easy to see that \(u' \) satisfies (ii). Again, \(\beta_r u' = 0 \) for \(r < r(h-2) \) and we repeat the argument until we reach \(E_{r(0)} \), then we obtain an element \(\tilde{u}_{i(h+1)} \) in \(E_{r(0)} \) to which we may assign \(w_i(h+1) \).

Now we assign \(w_i \) to \(x_i \) for \(i \in I \), \(i < i(h+2) \) and obtain an isomorphism up to degree \(2i(h+2) - 1 \). Then we have finished the proof of (i), (ii), (iii) with \(j = h+1 \). From (11) we see \(\beta_r = 0 \) up to degree \(2i(h+2) - 1 \), unless \(r = r(j) \) for \(j = 0, \ldots, t-1 \). This completes the proof.

We have identified \(H^*(Y_{n,n,n}; \mathbb{Q}) \) with \(E_{r(0)} \) as algebras, for every prime \(p \).

Then we have completed the proof of Theorem A.

REFERENCES

Northwestern University, Evanston, Illinois

Universidad de Buenos Aires, Buenos Aires, Argentina