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CYCLIC VECTORS AND PARTS OF THE
SPECTRUM OF A WEIGHTED SHIFT

BY

RALPH GELLAR(')

Introduction. Given a Schauder basis {yn}-x, in a complex Banach space B,

with || v„|| = 1 for all n, let a={a„}üoo be a sequence of nonzero scalars such that

the linear operator T=T„ defined by T*2.cnyn = ^cnan + xyn + i is bounded. The

present paper is mostly concerned with the parts of the spectrum, cyclic vectors

and invariant subspaces of T. It is a continuation in every respect (including

numbering of theorems and sections) of the author's paper [11], which was about

operators commuting with T.

The main source on weighted shift operators are the papers [5], [12], [16], [18]-

[20] of N. K. Nikol'skiï. A good deal of information is also scattered throughout

Halmos' Hubert Space Problem Book [13]. For unweighted shifts the best reference

is Helson's book [3].

In §§8 and 14 we describe the parts of the spectrum of T in complete detail.

Taylor [2, p. 235] divides the spectrum of a bounded Banach space operator into

six parts. Five of these parts may appear in shift operators, but no more than 3 in

any one operator.

§9 constructs all invariant subspaces of T of finite dimension or codimension.

In [11] we noted that an operator 5 commuting with T is completely determined

by the element Sy0. §10 considers the outcome of assuming (A) that each element

fe B is of the form Sy0 for some commuting operator S. In particular we find all

(doubly) cyclic vectors of T under this condition. In §11 we construct explicitly the

ring of operators commuting with T when {yn} is the usual basis in c0 or /x and

find n.a.s.c. for hypotheses (A) in these cases.

In §12 we give sufficient conditions for (A) for one-sided bases which leads in

§13 to the complete description of the invariant subspaces of certain T. Also in §13

we find the smallest invariant (or doubly invariant) subspace of T containing an

element/whose coefficients decrease sufficiently rapidly.

Preliminary discussion. A weighted shift is equivalent to an unweighted shift

on a nonnormal basis. In [11] we defined a new Schauder basis {zn}üoo for B, such
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that 7z" = zn + 1 (generally with jjzn¡j=¿ 1). For each/£ £,/=2-» bnzn=def/(z), and

we have Tfi(z)=zf(z).

This heuristic expression of members of B as "Laurent series" suggests a

multiplicative and an analytic structure, both of which in fact do have significant

relationships to the operator T. For example, let &r={f(z) £ B | f(z)g(z) e B, for

all g(z) £ B}. A bounded linear operator commutes with T iff it is of the form

f(T): g(z) ->f(z)g(z) for some/(z) e ^ [11, Theorems 1 and 2].

For convenience we reproduce here from [11]:

(2.1) There exists M>0 such that if/(z) = 2?» bnzn £ B then

\b„\ é A/||/||/||zn||   for all n.

The following result is used implicitly in this paper: If the Laurent series 2-• bnzn

and J-» cnzn both converge to analytic functions on a common annulus, then their

formal product 2"- - °o (2f= - °° b¡cn-j)zn converges on that annulus to the product

of those functions.

7. Analytic behavior in B.

Definition. Let

7+ = lim inf ||zn|1,n, Q+ = lim sup \\zn\\lln,
ti-*» n-*co

/" = lim sup |zn||1/n,    and    Q~ = lim inf ||zn|[1/n.
n-* — oo n-* - oo

We have R2èl + é Q+ £Ry and R2< Q~ g/" ¿Ry.

Theorem 11. If fie B then

(1) f+(z) converges to an analytic function in the region \z\ </ + .

(2) f~(z) converges to an analytic function in the region \z\ >I~.

(3) If I " < I+, then convergence in B implies uniform convergence of the associated

analytic functions on compact subsets of the region I' < \z\ <I + .

Proof. Let f(z) = 2 bnzn. (1) According to (2.1), for n>0, we have

|*»l á M||/||/||z1|.
Thus

lim sup |¿n|1,n á lim sup ||zn||-1,n = (lim inf |zn||1/B\-1 = (J*)-1.
n-»oo n-*oo \  n-»oo /

(2) Is proven similarly, using (2.1) for n<0.

(3) Given s and / with I~ <s<t<I + , it suffices to show the existence of a

constant Ksuch that if sZ \\\£t, then |/(A)| ^ \\f\\Kfor all/in B. Now

\m s I w w - Z iM-i {^ s im{ï fr£ ^).
where we use (2.1) at the last inequality, and the convergence of the final sums

follows from the definition of 7 + and 7 ".

Note that/£ B iff/+ £ B and/" £ B.
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Theorem 12. (1) Iff+(z) converges to a function analytic on a neighborhood of

the set \z\ g Q + , thenf+(z) e B.

(2) If f~(z) converges to a function analytic on a neighborhood of the set \z\ ä Q~,

thenf-(z)eB.

Proof. (1) The hypothesis implies that 2"=o \bn\tn<oo for some t> Q + . By the

definition of Q+ there is a constant .AT such that ¡|zn|/f "<.rvfor all n^O. It follows

that the series for/+ converges absolutely in B and we have ||/+(z)|| ^2™ \bn\ l|znl

ÚK2? \bn\tn. The proof of (2) is similar.

It is easy to check that not every power series f*(z) with radius of convergence

equal to Q+ lies in B.

Theorem 13. (1) If f(z)=f+(z)e B and rf, the radius of convergence of f(z)

satisfies rf<Q + , then for each J with rf<J<Q+ one can write f(z) =/i(z) +f2(z),

where the power series fx(z) has Hadamard gaps and the radius of convergence of the

power series f2(z) is not less than J.

(2) A similar proposition holds when f(z)—f~(z), with Q+ replaced by Q~.

Proof. Pick K such that I+ ¿rf<J<K<Q + . (The first inequality is Theorem 11,

part (1).) According to the definitions of/+ and Q + , there must exist an infinite set

of positive integers m and corresponding integers ni > m such that

(*)       '     ||zm| Ú Jm,       Jm+i < \\zm+l\\ < Km+I   for m < m+j < m',

and
|zm'|| ^ Km\

We now estimate the minimum value of m' — m. We have

\\T\\— è |z*'|/||z"|| £ (K/JY.

Thus m'-m^(log(Áy/)/log|¡7l)/n = 0m. Let M,={n : \\zn\\ZJn}. If m and m'

satisfy (*) and y < 0m, then m+j$M,. If f(z) = 2o Kzn, define fx(z) = 2„sM, bnzn

and f2(z) = 2n*Af, bnzn. Now/^z) clearly has Hadamard gaps in its power series.

A proof similar to that in Theorem 11 will show that the radius of convergence of

f2 is not less than /.

8. Some analysis of the spectrum of T. We shall be concerned in this section

with propositions ^ about shift operators T, depending on a complex parameter A,

which are (1) true for all shift operators when rx < \X\ <r2 (where r: and r2 will be

functions of a), (2) true for some shift operators whenever and only whenever

rxú\X\^r2 and A/0, and (3) false for some shift operators when 0?¿|A| =r1Sr2

or when rx ̂  r2 = | A| #0. We will say " the situation is ambiguous on the boundary "

to describe the situation above. The construction of examples in the ambiguous

case will not be given.

Definition. If f(z) is a rational function with no poles at zero or infinity let

f(z)+ and/(z)_ be its Laurent expansions converging inside a zero-centered circle

and outside a zero-centered circle respectively.
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Theorem 14. (1) À /j in the point spectrum ofTiff(X-z)zr1-(X-z)z1sB.

(2) Condition (1) holds if Q+ < \X\ < Q~ and

(3) only if Q+ i\X\£Q- and X^O.
The situation is ambiguous on the boundary.

Proof. (1) Simple calculation shows that as Laurent series (A—z)/(z) = 0 iff A^O

and/(z) is a multiple of A((A-z);1-(A-z):1) = 2-o0 A-"zn.

(2) When Q+ < \X\ < Q~, Theorem 12 shows that (A-z);1-(A-z):1 lies in B.

(3) If/(z) = 2-oo X~nzneB, then by (2.1), |A"n| ¿ M\\f\\ ¡zi"1 for all n. For

n>0, |A|è(A/||/||)-1'n||zn||1"1 so \X\^Q + . For n<0, |A| á(/Vf||/||)-1"l|!^n||1/B so

1*1 S ß-.
Note. For {yn}-œ an orthonormal basis in Hubert space these facts are found in

[12, p. 188].

Theorem 15. (1) ^{((T-X)B)^B iff the mapping <f a : 2 ¿>,>zn-> 2 Mn is a

bounded linear functional on B.

(2) Condition (1) holds ifl' < |A| </+ and

(3) holds onlyifiI-S\X\<r and A^¿0.

77ie situation is ambiguous on the boundary.

Proof. (1) Suppose cëP((T—X)B)^B. Then there exists a nonzero bounded linear

functional F on B vanishing on <€f((T- X)B). We have F(z- A)zn=0 for all n. Thus

Fzn+1 = XFzn so F is a scalar multiple of SK. Conversely, if SK is continuous it

vanishes on <€t((J-X)B), but Sh^0.

(2) The continuity of Sx for/" < |A| </+ follows immediately from Theorem 11

part (3).

(3) Suppose ¡All ^ M. Then |An| ̂  Af||z"| for all n. For n>0, |A| g Mlln\\zn\\lln

so |A|g/ + . For n<0, |A| £ M11*^1* so |A|£/-. When A=0, W((T-X)B) = B

and SK is not bounded.

We now turn to questions of invariant subspaces and cyclic vectors, but shall

return to examine the spectrum in more detail in §14.

9. Invariant subspaces of finite dimension and codimension. We use the word

subspace to mean a closed linear manifold. We use the unqualified word invariant

to describe a set N^B such that if fis N then TfieN. We say a set N is doubly

invariant if it is invariant and whenever fis N and z'fieB then z_1/£ N. We

denote by C, and E, respectively, the smallest invariant and the smallest doubly

invariant subspace of B containing/ We say a subspace Nis of codimension n in

B if the quotient space M=B/N has dimension n. Let/->- [/] be the natural map

from B to M. If TV is an invariant subspace then the operator Tm on M defined by

TmU] = W] is bounded.

Lemma 1. (1) Let N be an invariant subspace of finite codimension n in B. Among

those polynomials satisfying p(T)B^ N there is a minimal monk polynomial p. p is

the minimal polynomial of Tm. Degree p = n. <&¿(p(T)B)=N.
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(2) Let N be an invariant subspace. If p(TM) = 0 for some polynomial p, then

codimension N is finite.

Proof. (1) Note that p(TM)=0 iff p(T)B^ N. Thus the existence of the minimal

polynomial is assured and it is the minimal polynomial of T\/,p- Nx=^^(p(T)B)^ N

so that the natural maps B -> B/Nx -*■ B/N are surjections. Thus the sequence

{[z"]}ïM is complete in B/Nx- But [znp(z)]=0 in B/Nx for all n. It follows that

{[zn]}o-1 is complete in B/Nx where m is the degree of p. So dimension B/Nx^m.

But p is the minimal polynomial of Tm so m g n. It follows that the second map

above is an isomorphism, n—m and Nx=N.

(2) As above, the hypothesis implies that {[zn]}£-1 is complete in M where m

is the degree of p, so dimension M is finite.

Theorems 14 and 15 give sufficient information to enable us to describe the

invariant subspaces of dimension and codimension 1. A one-dimensional invariant

subspace is constructed by choosing an element of B of the form (A—z)+l — (A — z)z1

as its basis. This can be done if Q+ < \X\ < Q~, only if Q* ̂  |A| ̂  Q~ and A#0,

and the boundary situation is ambiguous.

If N is a one-codimensional invariant subspace, Lemma 1 shows that

N= <€(((T-X)B)

for some A. Thus a one-codimensional invariant subspace is constructed by choosing

A such that êK is bounded and letting the subspace be the set of elements of B

which vanish at A.

We shall generalize Theorems 14 and 15. The new proofs are too similar to those

theorems' to be included. As corollaries we shall find all finite dimensional and

finite codimensional invariant subspaces.

Theorem 14A. (1) kernel (T- A)" $ kernel (T- X)n -x for n> 0 iff

(X-z)zn-(X-z)ZneB.

(2) Condition (1) holds for all n>0 ifQ+<\X\<Q~.

(3) Condition (1) holds for no n>0 unless Q+ ¿ \X\ £ Q~ and X^O.

(4) Ambiguity on the boundary: For each X "on the boundary" there exists kK a

positive integer, 0 or <x> such that condition (I) holds ifkx^n>0, and fails to hold if

n>kx. (The value ofkK is "ambiguous".)

Theorem 15A. (1) fi?if((T-X)nB)<£<#¿((T-X)n-1B) for n>0 iff the mapping

f(z) -> $K(Dn'xf(z)), which evaluates at X the (n-l)st formal derivative of each

f(z) e B, is a bounded linear functional on B.

(2) Condition (1) holds for all n>0 ifT<\X\<r and

(3) holds for no n>0 unless I' ^ |A| á/+ and A/0.

(4) Ambiguity on the boundary: For each X "on the boundary" there exists jx a

positive integer, 0 or oo such that condition (1) holds ifjA>n>0, and fails to hold if

n>jx-
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We construct any finite dimensional invariant subspace TV by choosing points

Xu i—\,...,j, satisfying Q* á |A¡| S Q~ and A¡#0, and choosing positive integers

mt, with WjSA-A| if A( is "on the boundary". Let TV be the subspace with basis

{(Xi-z)~+n-(Xi-z)Zn | /= 1,.. .,j, 1 ¿nanti}. Since

(A-rX(A-z)r-(A-z):") = (A-z);"+1-(A-z):n+1

if n> 1, or =0 if n= 1, it is clear that TV is invariant. That every finite dimensional

invariant subspace must be of this form follows easily from Theorem 14A and the

well known structure of operators in finite dimensional spaces.

Dimension Cf is finite iff /= (g(z)) + — (g(z)) _ for some rational function g(z).

The formal equation z_1/=z_1(l/A)(A-z)/-l-(l/A)/shows that every finite dimen-

sional invariant subspace is doubly invariant.

We construct any finite codimensional subspace TV by choosing points Af, /=1, ...,j

satisfying /" ^ |A¡| ¿I+ and A¡#0, and choosing positive integers mh with m^j^

if A¡ is "on the boundary". Let TV be the set off(z) £ B which vanish to degree at

least w¡ at each A¡ (that is, ex(Dnf(z))=0 if A = A¡ and 0^n< w,). Codimension TV is

2í-i mt- n?=i (z_A,)m< is the minimal polynomial of Tm- It is clear that any TV

chosen as above is not only an invariant subspace but is doubly invariant also.

Conversely if TV is invariant of finite codimension, the minimal polynomial p of

Tm can be factored as above. It is an easy consequence of Theorem 15A that A, and

«ij must satisfy the restrictions listed above. By Lemma 1, N=c€((p(T)B) so TV is

included in the examples above.

10. When B is an algebra. As sets of power series, ^"£S. Throughout this

section we shall investigate the case where !F=B. Theorems 1 and 2 show that

^=fi iff/(z) £ B and g(z) e B imply that f(z)g(z) e B.

Note 1. The natural map from & to B which sends/(z)to/(z) is norm-decreasing:

||/(z)||B= ||/(r)l ||*á ¡/(T) || = i|/(z)||^. If^=Äthismap(which preserves products)

is 1-1 and onto so !F and B are topalgebraically isomorphic. Thus we can transfer

ideal theory from & to B and {z"}™,*, is a Schauder basis in &.

Theorem 16. Suppose &=B. Then (1) spectrum T=D = {z \ R2^\z\¿Ry}.

0<R2=Q-=r¿I+ = Q+=Ry.

(2) jn^ I for each point X "on the boundary". There is one maximal ideal of B

corresponding to each point X of D, and the associated multiplicative functional is <fA.

(3) Ifif(z) — 2 bnzn £ B, then the Laurent series 2 bnzn converges uniformly (as a

function) on D to the function f(z) (which must then be continuous on D and analytic

in the interior of D).

Proof. Let TV be a maximal ideal in &■'( = B) and let F be the associated multi-

plicative linear functional, z—A £ TV for a unique complex A, so F(z—A)=0. Then

F(zn(z- A))=0 for all n. Thus F(zn + 1) = XF(zn), and we also know that F(l)= 1, so

Fis SK. By Theorem 15, part (3), we must have I' Ú |A| ̂ 7+ and A^O.
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Now suppose A e spectrum T. Then there exists a maximal ideal N in W( = B)

such that z-XeN. Thus spectrum 7"£{A | /- £|A| á/+ and A^O}. But by

Theorem 6, £>S spectrum T. (1) and (2) follow immediately.

The multiplicative functionals Sx are all of norm 1 on & and so are uniformly

bounded on B for all A e D. Thus convergence in B implies uniform convergence

on D. Since for each f(z) — 2 bnzn e B, the series converges in B to f(z), part (3)

follows.

Theorem 17. If ^—B every doubly invariant subspace is a closed ideal and vice

versa. Ef = B ifff has no zeros on D.

Proof. Since J"1 is bounded, a doubly invariant subspace Nis invariant under

both T and T~l. Pick fe N and g = 2 bnzn e B. Since fie F, gf= 2 bnznfe N so N

is an ideal. That every ideal is doubly invariant is trivial.

We conclude that E, = B iff/is contained in no proper ideal iff SK(f)^0 for all

Xe D.

Note 2. If we had been working with a one-sided basis {yn}o the statements of

the last two theorems would have to be varied slightly. In particular, fiK would be

bounded for A=0. Also in the above theorem we would replace E, by Cf, and

"doubly invariant" by "invariant".

Theorem 18. Assume ^=B. Suppose f does not vanish on the zero-centered

circles of radii Rx and R2. Then Ef is of finite codimension. E, is the set of functions

vanishing to at least the same orders at the same points as f

Proof. Let M=B/E,=!F/E,. Since E, is a closed ideal, M is topalgebraically

isomorphic to a quotient Banach algebra. Each maximal ideal in M is the quotient

of a maximal ideal in B containing Ef, the smallest closed ideal containing /

Thus the associated linear functionals to maximal ideals in M are of the form

[g] -*• &\(g) for precisely those A for which &x(f) = 0. Using the same arguments

as in the proof of Theorem 16, we may conclude that spectrum Tm=zeros of

/£ interior of D.

/(z) = 2 bnz" converges uniformly in some neighborhood of spectrum Tm so the

usual functional calculus defines f(T\t) = 2 bnT\¡ where the series converges in the

uniform operator topology. Now f(TM)[l] = 2 ¿\7m[1] = 2 bn[zn] = [f]=0. Also,

since f(TM) commutes with TM, f(TM)[zm]=f(TM)TM[l]=0 for all m. Lorch [1,

Theorems 8 and 9] shows that if under the usual functional calculus, a function of

an operator is zero, that operator satisfies a polynomial identity. Part (2) of Lemma

1 then shows that E, is finite codimensional.

According to our description of invariant subspaces of finite codimension, Ef

must be the set of all elements of B vanishing at certain specific points to at least

certain specific orders. But clearly every element of Ef vanishes wherever / does,

and to at least as high order as / (note that we do not admit the concept of an
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element in B vanishing at A "on the boundary" to any order higher than jA).

On the other hand,/itself vanishes only as /does. Thus E, must be as advertised.

(Note: working with one-sided bases we must replace E, above by Q.)

Note: When B=^~, the method used in the above proof allows us to find the

spectrum of f(T\t) for any (doubly) invariant subspace TV and any fe ¡F. The

analogous problem when B is the space H2 (and ^=H°°) has been solved by P.

Fuhrmann [14].

11. Shifts on c0 and ly. In this section we study "shifts on c0 and ly", that is

weighted shift operators on the usual basis of these spaces. The fact that the norm

of an operator on c0 or ly can be calculated from the coefficients of its matrix makes

possible more precise information in this setting.

We use two-sided spaces. We define c0 to be the set of sequences c={cn}1n

converging to zero in both directions, and with the sup norm. For ly we require

2-00 |c„| <oo and this sum is the norm.

The transformation Tc=d where d¡ = 2f=-<o %c* is a bounded linear operator

from e0 to c0 if the matrix (au) satisfies lim^*, a^—limi.,-«, 0^=0 for ally, and

sup, 2f=. - » \au\ < oo, and this last constant is then the norm of the transformation.

For ly the requirement is sup, 2<"-» \aa\ <0° an£l tms constant is the norm of T.

(Cf. [2, p. 217 and p. 220] for similar results for the one-sided spaces.)

The usual basis of c0 or ly is {y„}"œ where yn is the sequence with 1 in the nth

place, 0 elsewhere. This is an TV-basis (see Theorem 10).

In the remainder of this section we shall assume that T is a shift on c0 or on ly.

Theorem 19. In c0,f(z) = %bnzn e^ iff-

oo

lim |¿>,_,| ||z'|| =  lim   = 0   and   sup   T   |6,_,| ■p\l<co

and this constant is ¡1/(7") ||. For ly, the corresponding requirement and constant is

\\f(T)\\ = sup   2   IÄ..J Jg| < oo.
>        i=-00 llZ    II

Proof. The matrix of f(T) with respect to the usual basis in c0 or in ly satisfies

KHV,IS*WII-
Corollary 3. Iff(z) = J.bnz'i e 3P, then in the strong operator topology

j_
lim     2   bnTn=f(T).

Proof. First, calculation of operator norms by the formulas of Theorem 19

shows that \\?n=-kbnT"U\\f(T)\\.
We must show that

(*) i™    2   KTng=f(T)g   for all g e B.
k.>-"° „rit
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This equation holds for g=zm, because zmf lies in B for all m, and (*) simply

expresses the fact that the Laurent series for zmf converges to zm/in B. Because of

the uniform boundedness of the operators proven above, (*) then extends to hold

for all elements in the closed span of {z™}"«,.

Corollary 4. If N is a doubly invariant subspace andfe !F, then N is invariant

underf(T)(3).

Theorem 20. (1) Iff =2 bnzn e ¿F thenf* e & andf' e JT

(2) If fe ^,f+(z) is bounded on the region \z\ < Rx, andf'(z) is bounded on the

region R2 < \z\, both bounded by \f(T)\.

Proof. (1) is a simple consequence of Theorem 19. When R2<RX, (2) is implied

by Theorem 5.

We may assume \f(T)\$\. Then by Theorem 19, ||/+(D||<1. We have

\bn\Rnx^\\bnTn\\ú\\f+(T)\úl, for all n£0, where the middle inequality follows

from Theorem 19, and the first inequality is derived as follows: By Theorem 10,

the spectral radius of T=RX. Thus the spectral radius of Tn = Rlu\\Tn\\.

We calculate |/+(A)|g2o° |*.| l^-ZIMÄKlAI/ÄiySO-dAl/Äi))-1-*» for
|A| < Rx. Since we also will have ||(/+)n(r)|| ^ 1 for «>0, a repetition of the above

argument shows that |/+(A)|n^iA for all n>0. We conclude that |/+(A)| ^ 1.

A similar proof works for/".

We have proved in Theorem 20 that if Rx = R2 and/e &, then/(z) is the " Fourier

series" of a function bounded and measurable on |z| =R%.

Corollary 5. If R2<Rx or if R2=0, T has no reducing subspaces. Suppose

R2 = Rx and N is a reducing subspace. Then there is a measurable subset E of the

circle \z\=Rx such that N is the set of f(z) in B vanishing on E, in the sense that

N={fe B | p(z)f(z)—f(z)} where p(z) is the "Fourier series" of the function which

is equal to 0 on E, and 1 on the rest of the circle.

Proof. By definition a reducing subspace is the range of a nontrivial projection

which commutes with T. Thus we have N=p(T)B and (p(T))2=p(T). Corollary 2,

in §3 shows this can only happen if 0^Rx = R2. In this case we have (p(z))2=p(z)

as formal series, so p(z) is the " Fourier series " of a measurable function taking

on only the values 0 and 1. The corollary follows without difficulty(4).

(3) Added in Proof. In The commutants of certain Hubert space operators, (to appear) A. L.

Shields and L. J. Wallen have proven that any operator commuting with a weighted shift on

the one-sided 2 space is a weak limit of polynomials in the shift. Therefore Corollary 4 holds

for these shifts also.

(4) Added in Proof. A weighted shift on c0 or lx has no nontrivial reducing subspaces. The

author is grateful to M. Hilden for the following argument: For convenience assume Rx = \.

Suppose p(2)=xZ-- bnZn, and let f(eia) = 2? bne'nê. Re f(elB)=p(ei3)=characteristic function of

£. By Theorem 20, f(eie) eH*. Then g(ei») = e™f^ eH°.lm g(ew)=0 a.e. Since a function

in H" is determined within a constant by its imaginary part, g(ew), f(eiB) and p(ew) are all

constant.
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The above proposition is true (and well known) for the unweighted shift on an

orthonormal basis in Hubert space. Helson [3, p. 7] attributes it to Wiener. Halmos

[4, p. 493] seems a bit doubtful about that.

Theorem 21. B=& iff
CO I j   I!

s< p,.?„ wfcN< °° (forCo)

and iff

SUP TpTTOïï < °°   (f°r ll)-
i.i   \\z.T»

Proof. Suppose B=&. Then Note 1 of §10 implies that there exists a constant K

such that \fi(T)\^K\f\ for all/£ B. In c0: /(z) = 2î?= — ||z"|| _1z" has B-norm 1.

Then
t  T III

K è 1/(7-) || = sup   2 •'-'11 Mil'      j = i-m  II'        II   Ik  II

using Theorem 19. In lx: f(z)= \\zm\\~1zm does the trick.

Conversely : If fi(z) e B, then in c0,

uni - »pj„ iv,i « s i/i tXv^PT
where we used (2.1) at the last step. We must also check that znfe B for all n and

all feB. This follows since

llz'l
TFTTlN<00

which implies 7?2>0, and then T'1 is bounded by Theorem 10.

In/,,

||/(7)I = sup  2   \h-Á H
>       J--0O llZ   II

V   it    i i, .■.,„/      M     \ «, ,,, ||zf||
= sup 12œ iv,i w* twkwii -m ™? f%t

since zr—i*kwi ■*•-■*■—t/"I-

12. One-sided bases. Suppose throughout this section that we had started with

a one-sided basis {y„}? and the sequence a = {a„}3° to determine a shift operator T.

We derive conditions guaranteeing B=& This will lead, in §13, to theorems

concerning invariant subspaces.

Theorem 22. If there exists m > 0 such that

then B=& and 7+=0.
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Proof. Let /=2o° bnzn and g=2o cnzn lie in B. Then f=p + u and g=*q+v

wherep = 2o-1 ¿V and q=J.o~1 cnzn. The product u(z)v(z) lies in 5. In fact

w        it — rn w       n, — rrt #

^ 22 iiv.-^ii = m2i«ii u»ii 2 2 mi'mLii < œ>
ir

fc = 2m ¡ = m

where we use (2.1) at the middle inequality. Then/g=/><7+/7i> + w<7+wr lies in B.

B=&. To show /+ =0 note that we have

2 <  00.

Thus l¡mfc ¡zk||/||z*-mi|=0 and lim,,, ||zn||1/n=0.

Theorem 23. Suppose {ym}0 is an N-basis (see Theorem 10) and ¡7x11 = 1. Then

if there is an m > 0 such that

B=F andI+=0.

Proof. As in Theorem 22 we let f=p + u and g=q + v and show uv lies in B.

Note that {yn}% is also an N-basis for the space it spans and that 7\ restricted

to this space has norm 1 also. Using (6.1) and (2.1) we obtain

• « sup n i«*!
¡Hi ̂  2 ii«^ii ̂  NM\\»w in 2 iim v,;,1—

y-m i«m llz II

- ^Hl H 2 ?»p línríi < °°-
zi+'||

,.,¡,16«      I'H?

The proof that / + =0 is the same as in Theorem 22.

13. Invariant subspaces. If T is a shift with weights a={an}f on a one-sided

basis {yn}ô then for n^O, Bn=(€f(JnB) is an invariant subspace of T. {v,}™ is a

basis for Bn. T restricted to Bn is a shift operator on that basis with weights {at}n+l-

Theorem 24. If for each n > 0, Bn (considered on its own as the domain of the shift

operator T) is an algebra (as described in §10), and if in addition I+ =0, then the only

invariant subspaces of T in B are the subspaces Bn.

Proof. First note that for the power series representations of all B„, we have

7+=0also.

Let N be an invariant subspace. Let n be the largest integer such that /Vs Bn.

Choose feN with feBn\Bn + x- In the power series representation of Bn, (f)0 =
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<^o(/)#0. By Theorem 17 and the comment after it Cr = Bn. Since QcTVwe are

done.

Corollary 6. For a one-sided shift the only invariant subspaces are of the form

Bn if any of the following conditions hold:

(a) For each n ^ 0, there is an m > 0 such that

an + lan + 2' ' 'ßji + k-i

(For brevity denote the expression inside the above summations by anki.)

(b) 77ie basis is an N-basis with || 7i || = 1 and for each n ̂  0, there is an m > 0

¿«en that 2r=m sup¡>mfln(i+í)i<co.

(c) 77ie basis is the usual basis of the one-sided c0 space, 7+ =0, and for each

«èO, SUptgoZ5-oûnii<00.

(d) 77ie èflj/'i w ine usual one in the one-sided ly space, for each n^O,

supuso antí+jH<<x>, andl+ =0.

Proof. The conditions in (a), (b), (c) and (d) guarantee that 7+ =0 and that Bn

is an algebra for all n ̂  0. Theorems 22, 23,21 and 21 again are used in the respective

four parts. (Although Theorem 21 is stated for two-sided bases, the corresponding

result for one-sided bases is true and proven similarly.)

Note 3. Using different methods N. K. Nikol'skii [5], [16] has discovered very

similar results to (b), (c) and (d).

The condition: |an| decreases monotonically and {a„}" £ lp for some p^l, is

stronger than all four conditions of the above corollary.

In [15], Donoghue gave the first example of a weighted shift whose only invariant

subspaces are of the form Bn. His example: {yn}o an orthonormal basis in Hubert

space, an=2~".

Nikol'skii [12] has found shifts in lp for which an^0 (all n), and an->0 but

which have additional invariant subspaces of a different form.

A shift on the usual basis of ly where the sequence of "weights" a= 1, 1/2, 1, 1/2,

1/4, 1/2, 1, 1/2, 1/4, 1/8, 1/4,... satisfies condition (d) of the corollary. This

gives an example of an operator T no polynomial of which is compact, and whose

lattice of invariant subspaces is order anti-isomorphic to the positive integers.

Some development of the theory of the adjoint of T is necessary in order to

prove the next theorem.

To each bounded linear functional F on B we shall assign the "Laurent series"

2 bnzn, where bn = (z~n, F) = F(z~n). We say f(z) = 2 bnzn e B* with norm ||/(z)||*

m\F\. Iffi(z)eB* so is Tfi(z)=zf(z) and we have (Tg(z), f(z)) = (g(z), Tf(z)) for

all g £ B.

For g(z) = 2 cnzn £ B we have \(g, zn)\ = |c_„| á M[|g||/||z-n||, (using (2.1)). Thus

||zn||*^M/||z-n||. But l = (z-\ zn)^||z-n|j ||zn||*. Thus ||zn||*ä l/||z-n||. Finally

note that for/(z) = 2 Kz«eB*, \bn\ = |(z-, /(z))| S ||/(z)IN|z-n| ^ Af||/(z)||*/||z"||*,

which is the analogue for B* of (2.1).

CD      K—m

I I
= 2m   f = m
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It follows that the same proofs and statements as those in Theorems 11 and 12

hold for B* with

(13 1)       / + * = Ö"'      /~* = ô+>      ô+* = '->      Q-* = l + ,

Rf = Rx,   and   Äf - R2.

(Be it understood, however, that {z"}",, may be no Schauder basis in B*.)

Theorem 25. Suppose f+ is analytic on a neighborhood of the set \z\ á Q+ and

f~ is analytic on a neighborhood of \z\^Q~. Then Ef is either of finite dimension,

finite codimension, or is B itself.

In particular, ifl~£l+, then E, is the set of all series in B "vanishing as fdoes".

We know necessary and sufficient conditions that Ef is finite dimensional (§9). In

all other cases E¡ = B.

Proof. Case 1. Suppose Q~£Q + - (This includes the case where /"g/ + .)

Choose real positive s and t such that s<Q~, Q+ <t,f(z) is analytic on a neigh-

borhood of the annulus s á |z| á t, and/(z) has no zero on the zero-centered circles

of radii s and t.

Let {y'n}-m be the usual basis of lx = B' and let a'={añ}™„ be defined by an = t

for «2:0 and an=s for n<0. These conditions define a shift operator T and a

power series structure on B'. An easy calculation using Theorem 21 shows that B'

is an algebra. We have R'x = Q'*=I' + =t and R'2=Q'~ =/'" =s.

If g(z) e B', g+(z) is analytic in the region |z| <t (Theorem 11). But t> g+, so

by Theorem 12, g+(z)eB. Similarly g~ e B, so geB. The map from B' to B

which sends the series g(z) to the series g(z), being defined by a matrix (the infinite

unit matrix with respect to the bases {z"}"« in B' and B), is bounded. We conclude

that convergence in B' implies convergence in B.

f+(z) is analytic on a neighborhood of the region \z\-¿Q' + =t so f+(z)e B'.

Similarly f~(z) e B' so f(z) e B'. Since/(z) has no zeros on the circles of radii R[

and R2, Theorem 18 shows that the smallest doubly invariant subspace of B'

containing /(z) is finite codimensional. This subspace is spanned by the elements

{znf(z)}1m. Thus this sequence holds a polynomial in its B' span. It follows that it

holds a polynomial p of degree m in its S span, which lies within Ef. As in Lemma 1,

we see that [z"]o_1 spans M=B/Ef. E, is finite codimensional.

Finally as in the end of the proof of Theorem 18, we can conclude that E, must

be the set of elements in B "vanishing as/does".

Case 2. Suppose Q+ < Q~. The positive and negative parts of each of the series

{zn/}-oo are analytic respectively on a neighborhood of |z| ^ Q+ and of Q~ ^ |z|.

Thus these series lie in B and in particular in Ef. If we suppose Ef^B, then there

is a series g(z) e B* such that (z% g)=0 for all n. By (13.1), the series g(z) converges

on the annulus Q+ < \z\ < Q~.

Pick positive real s and / with Q* <s<t<Q', such that/+(z) is analytic on a

neighborhood of \z\^s, f~(z) is analytic on a neighborhood of r^|z| and such

that g(z) has no zeros on the zero-centered circles of radii s and /.
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Let B' be the same space constructed in Case 1, using the above s and /. Since

Q'~ =i and Q' + = t, we know that g(z) £ B'. Since the operator T'1 is bounded

in B' we see that the series {zng}1x all lie in B' and that their span is E's, the smallest

doubly invariant subspace of B' containing g. Since B' is an algebra, Theorem 18

shows that E'g has finite codimension in B'.

By (13.1), for B'*, the dual of B' we have Q'~* = t and Q'+ *=s and so znf(z) eB'*

for all n. Now for all n and m, (zmg, znf) = (g, zn+mf)=Q. Thus {zn/| -co<n<oo}

lies in the annihilator of E'g. But the annihilator of a finite codimensional subspace

is finite dimensional. Hence Ef is finite dimensional.

Note 4. This theorem has two generalizations to one-sided shifts. The first says

that if the radius of convergence of a nonzero f(z) is greater than Q+, then C, is

finite codimensional. To prove it use a Case 1 type proof as in the theorem and

apply the note after Theorem 18.

The other generalization concerns left shifts. A left shift may be defined as the

linear map which acts on a basis {y„}" by sending y0 to 0 and y„ to (a'n)~1yn.y

(n>0) for some scalar sequence {a'n}y. Using the same power series representation

as we have been, the left shift sends/(z) to (fi(z) — (f)0l)/z. Note that for a two-sided

shift the mapping T_ :/"(z) -*■ (Tf«z))~ is similar to a left shift on a one-sided

basis (with a'n = (a_n)~1). If/"(z) is analytic on a neighborhood of |z| ^ Q~, and is

not cyclic under J_ then there is an element g(z)=g+(z) in B* such that

((T-Yfi-, Tmg+) = 0

for all n, m^O. A proof similar to Case 2 shows/" generates a finite dimensional

subspace under the action of T.. Translating to left shifts we obtain: If the power

series/(z) is analytic on a neighborhood of |z| ^ Q + , then either/(z) is cyclic under

the left shift or generates a finite dimensional left invariant subspace. Simple

considerations (as in §9) show this second possibility can occur iff/(z) is a rational

function.

This property of left shifts was proven for {y„}? an orthonomal basis in Hubert

space and a'n = l, for all n, in [6]. The proof of Theorem 25, Case 2, is a modification

of the proof of Theorem 3 in [7].

14. Further analysis of the spectrum. In Theorems 14 and 15 we have found the

point spectrum of J and the set of A such that ^((X-T)B)^B. It follows from

these theorems that these sets do not intersect since <?A is not defined at 2-« A~Bz".

For A in the remainder of the spectrum X-T is 1-1 and (A — T)B is dense in B.

What is the range of X-Tl

Theorem 26. (1) If Q+ < |A| or if \X\ < Q- then the range of X-T includes all

f(z) £ B such thatf+(z) is analytic on a neighborhood of \z\ iQ+ andf~(z) is analytic

on a neighborhood of Q~ ¿ \z\, e.g. /=y„. But (2) if Q~ < \X\ < Q + ,f(z) is in the

range of X—T, and the series f(z) converges in a neighborhood of X, then/(A) = 0,

e.£./#JV
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Proof. (1) Suppose Q+ < |A|. The proof for |A| < Q~ is similar. Suppose/(z) is

as described in the hypothesis.

Case 1. In addition |A| < Q~. Then (A-z);1/+(z) is analytic on a neighborhood

of \z\^Q + , (X — z)z1f~(z) is analytic on a neighborhood of Q"á|z|, so these

series lie in B. Direct calculation shows (A — T) applied to the sum of these series

yields/(z).

Case 2. In addition g"^|A|. Again (A—z);1/+(z) lies in B. The product

(X—z)Z1f~(z) converges to an analytic function on r<|z|<|A|, where r<Q~,

so this series lies in B, too. Again, (A — T) applied to the sum of these series yields

/(*)•
(2) Let (X—T)g(z)=f(z) for some g(z) e B. It is sufficient to show that g(z) is

analytic in a neighborhood of A. We will prove g+(z) is analytic there. g~(z) can

be shown analytic there in a similar manner.

(A -z)g+(z)=f+(z)+constant. Thus if g+(z) is not analytic in a neighborhood

of A, the radius of convergence of g+(z) must be |A|, and g+(z) must have a single

pole at A. Theorem 13 is concerned with power series whose radius of convergence

is less than Q + . It shows that g*(z)=gx(z)+g2(z) where g2(z) is analytic in a

neighborhood of A, while g,(z) has Hadamard gaps in its power series and must

have the same singularity on its circle of convergence as g+(z). But a series with

Hadamard gaps cannot have an isolated pole on its circle of convergence [8,

Chapter XI].

We shall outline a description of the sets

Sx = {X | kernel (X-T) * 0 and (X-T)B = B}

and

S2 = {A | (X-T)B is closed but not equal to B}.

We know for A e S1; dim (ker (A-T))= 1, g+S|A|£ß- and A^O. For A e S2,

codim(A-r)5=l, /"<|A|^/+ and A^O. By [9, pp. 369-370], A e Sx iff (X-T)

has a right inverse (A — T)a but no inverse. Also, A e S2 iff (A — T) has a left inverse

(A—T)L but no inverse. By [9, Theorem 4, p. 376], Si and S2 are open sets.

Suppose XeSx. (X — T)R is not unique. But by easy calculation we may verify

(X-T)*f(z) = (X-z)Zlf+(z) + (X-z)z1f-(z) + ce(z), where c is some nonfixed

scalar and e(z) = 2-» X~nzn. But e(z)eB. We may conclude that XeSx iff the

mappings

(1) /+(z)^(A-z);V+(z)

and

(2) f-{z)^{X-z)Zif-(z)

are bounded (since these mappings are defined by matrices). We may now let c=0

above to fix (A-T)B.

Suppose A g S2. (X—T)L is not unique. But we can fix it by choosing a subspace

H2 satisfying (A - T)B © H2 = B and letting kernel (X-T)L=H2 (see [10, Theorem
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1, p. 209] for details). We shall choose H2=the constant functions. Then by easy

calculation we may verify (X-T)Lf(z) = ((X-z)z1f+(z))++((X-z)Z1fi«z))-. We

conclude that A £ S2 iff the mappings

(3) /+(z)->((A-z):y+(z)) +

and

(4) /-(z)-*((A-z);y-(z))-

are bounded.

The complement of Sy (resp. of S2) has 1 or 2 components, each component

containing the set Q~ ^ |z| or the set |z| S Q+ (resp. 7+ ^ |z| or |z|2ï/").

Proof. If a were a nonempty compact and relatively open subset of the comple-

ment of S y, lying in the region Q+ < \z\ < Q~, and C were a properly chosen curve

(see [10, p. 218ff] for details) then Pa=$c(X-T)R dX would be a nontrivial

projection. Since C may be chosen not to wind around 0, then as in Theorem 8 we

can easily show Pa=0. The proof for S2 is similar.

Let

7?í = lim (sup   ff   |a,|)    >       7?2+ = lim /inn1"1,
n-.oo   \mêO j = m+1 / n-.oo \mèO/

Ry  = lim / sup \1/w,   and   R2 = lim /  inf \lln.
n-»oo \m + náO/ n-*oo  \m + n£0/

We have R¿ÚI+úQ+úRy and R2 éQ~ =1'èRi'- A proof similar to that

of Theorem 4 shows mappings (1), (2), (3) and (4) are unbounded if, respec-

tively, |A|<7?Í, |A|>7?2-, |A|>7?2+, |A|<7?r- Thus Sy^{RÎ < \z\ <R2} and

S2^{Ry < \z\ < R2}. Equality holds if {yn}-oo satisfies the hypotheses of Theorem

10. We indicate the method of proof: Let T+1 be the mapping (on the "Taylor

series" elements of B) which sends 2c? bnzn to 2? bn + 1zn. As in Theorem 10 we can

calculate the spectral radius of Tz1 which turns out to be (7?2 )-1. Then mapping (3)

is Tz^l-XTz1)-1.

Finally we consider the possibility of weakening the requirement that {y„} be a

Schauder basis. Let us assume {yn} and {Fn} are biorthogonal sequences, with ||y„||

and ||f„|| uniformly bounded, {yn} complete, and {Fn} total.

If Ta is defined by the equations Fn(Taf)=Fn.y(anfi), then everything in this

paper and [11] remains true (aside from minor modifications in §10) when {y„} is

one-sided. The difficulty lies in Theorem 2, for which a proof is given in [17] in the

one-sided case. For the two-sided case everything not depending on Theorem 2

remains true, i.e. §§7-9 and 11-14. Moreover, using alternate but similar proofs

Theorems 1, 3, 4, 6, 7, 8 and 10 remain true if fi(T) is redefined to be the operator

satisfying f(T)\ =/(z).
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