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A LEMMA IN TRANSCENDENTAL

NUMBER THEORY

BY

ROBERT SPIRA

In this paper, we discuss a faulty lemma of Gelfond of use in the theory of alge-

braic independence of transcendental numbers. We then replace Gelfond's lemma

by a clearly stated simpler lemma which is much easier to apply.

Gelfond's [1, p. 140] lemma is:

"Lemma. Suppose p, q, p>q\ r, rx are positive rational integers, e>0 and y are

fixed, and all the numbers ay, a2,..., aq, as well as the numbers ßy, ß2,...,ßr are

distinct and arranged in order of increasing absolute values, in other words, \otk\

= fafc+i| and 1/3*13s |fSfc+i|. We set |a,|=a, \ßr\=ß and suppose that there exist

constants y0>0, yy>0, y0+yy< 1, such that a<(pq)y\, ß<(pq)ro. We also suppose

that there exists a constant y2, such that the inequalities

i
|a,-a*| > exp (-y2q Inpq),

*»l;k#(

|o,-afc| > exp (~y2qInpq),       1 S i S q, 1 S k S q

are satisfied. Further, if the function f(z) has the form

f(z) = 2 2 A^^'
fc=0   s=l

where the numbers AkfS are not all zero, then at ¡east one of the numbers

/<«(&),       0Ss<ry-l,lSkSr,

»V = [Xpq],       A = (1 +n+2ya+«)/(l -yy-y0)

is different from zero for sufficiently large pq."

Smelev [2] also makes use of this result.

We next discuss Gelfond's lemma.

First of all, the phrase "the numbers Ak.s are not all zero," in the original is

literally "the numbers Ak¡s in the aggregate are different from zero." This phrase is

repeatedly mistranslated in [1] as "all different from zero."

Next one gets the impression that p and q are independent integer variables

subject top>qv. This condition is also written elsewhere asp<q'. The theorem as
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it stands does not say whether y is positive or negative, and the only place where

"y" appears in the proof is in the statement "The condition p>q\ appearing in

the formulation of the lemma serves only to simplify the proof and may be replaced

by a much weaker condition.'* The proof given fails at several points, and it is hard

to see how to make use of either of the conditions, though both hold with different

y's, in the various applications. Perhaps the explanation for this peculiar condition

is that in one of the uses of the lemma, the general condition with which we

replacep<qy reduces to a condition where p<qy can be used.

One also gets the impression that either r or rx is running, depending on the size

of pq. Indeed, r must be running, as otherwise the condition of the existence of y0

such that \ßr\ <(pq)yo would be trivial. However, the lemma could be interpreted

as having r fixed. The quantity q is running, so apparently we are dealing with a

sequence of a/s. When the lemma is used it turns out that we are not dealing with a

sequence of a/s, nor with a sequence of/S/s.

It appears that there are hidden assumptions which are intuitively verified when

using the result.

We now give a lemma which will replace the one above. It also omits the

condition of the existence of y2 and the associated conditions on the a/s. Further,

it decreases A, and we note that Gelfond states that this can be done. The new

lemma adds conditions, conditions (iii) and (iv), on the rate of growth of the

parameter /-x. In the applications, one has rx bounded or with a known rate of

growth. In Gelfond's "proof", the author believes Gelfond is implicitly assuming

a small rate of growth for rx, as he appears to be abstracting from two different

situations where this occurs. Our omission of the constant y9 and the associated

conditions does not depend on the assumptions about rx. This improvement of the

lemma is due to a different method of estimation of the full Hermite interpolating

polynomial.

Lemma. Let N be a positive integer variable. Let p=p(N), q=q(N), r = r(N) be

positive integer functions of N such that pq = m tends to oo with N. To eachq = q(N)

let there correspond a set Aq of q numbers a,x, a„2,..., a,„, which we write also by

an abuse of notation as ax,..., a,. To each r = r(N) let there correspond a set Br

of r numbers ßrA, ■ ■ -, ßT.r which we also write as ßx,..., ßr. We assume also that

there exist positive constants y0 and yx such that y0 + yx < 1, and for p, q, and r

(determined by TV),

(i) \ßrA<(p-q)\

(ii) Kj\<(p-qyK
Let e be given, e>0. Define

A = (l-r-y1-r-£)/(l-y1-y0).       »1 = the least integer ^ [Kpq]/r,

and assume finally, that

(iii) rx\ = myim,for N sufficiently large, and

(iv) rrx = 0(m).



f(z) «¿Z A*.sZke*\
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Then there is an N0, such that for any particular N greater than N0, if the function

f(z) has the form
P-l       Q

I      I
fc-0   s=l

where not all Ak.s are zero, and ifr2 ^ rx then at least one of the numbers

/<S>(A),       0SsSr2-l, 1 S kSr

is different from zero.

Proof. Without loss of generality, we can take r2 = rr. We will arrive in the

proof at various minima for N0, and it will be understood that we take the largest of

these. We set e = 3S. Without loss of generality, we can take \Ak.s\ S I, where at

least one AkiS has absolute value 1. For we can divide all the coefficients of/(z) by

the coefficient with largest absolute value. Arguing by contradiction, assume

N>N0, and A and rx given as above and that

/(S)(A) = 0,       OSsSry-l, I Sk Sr.

Let F be the circle \z\ = l and Tx the circle \¿¡\=m1~y¡. We take N so large that

m^2. Then T is inside IV Now y0 + yi<hsoy0<l—yy. Thus, the points ß,- lie in

the interior of I\, as \ßj\<(p-q)y'> = m'o<m1-yx. Since fis\ßk) = 0, OSsSry-l,

1 S k S r, we have that

(o m = Ki-iSi)(f-&)- • •<f-A)r*(fl,

where g(£) is analytic everywhere.

Now, for z on T, or indeed anywhere in the interior of Tj,

by the Cauchy integral formula, so

m - *-**-»• ■ -iß-tw ¿ |ri K{-M..'(<-)t,r,^ *

as we can divide out [(i-fr)- • -(£-/8r)]ri in (1) for f on Ty. Hence, again by the

Cauchy integral formula

Now,

■z

á¿max{2W-1    max    {Ifë^
2tt |j.| = i   t |{|-mi-"i   LIL(ff-Pl)- • -(C-Pr)J      ff-Z
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Also

|£-z| = \(\-\z\ = m^'x-l,

\E-ßj\ ä \t\-\ßj\ % mi-H-m\       j= l,...,r,

\z-ß,\ < 1 + |/3,| = l+m\ j= l,...,r.

Thus,

l+nfo    i",        1
-¡—:-       —i—:-r    max     /(£).
li-n-m,,oJ     m1_yi-l ki-mi-n '       '(3) |/«(0)|a*!m1-''li

Next, we have

\eta*\ = exp (Re (¿¡a,)) g exp(|fas|) = exp(|as| |f|) ^ exp (wW^i) = em,

so
p-1     «

max    |/(0| -S    max     Y   Y |£|V
l-ml-n |il-m--»i   j/To   s = iIÍ

(4) < p-q(m1-yiy-iem

= m-em-mma~yi\

Thus, from (3) and (4) we obtain

m1'yi T   l+m~yo   lrri
/,sl(0)| < s\—¿--r/iT,,i",e*"i-»I "'       .      mc«m"a-V

1 "       w1"'!-! LI -wvo + ''i-1J

< r1!nj",immm«i"M1",,o"''i>*n-y4

g mmm~M1~vo-yiym• A,

using (iii), where

r   1+,,,-vo   lrri
(6) A = me"  ,       , +v    .      m»--'o--'i>«—"i>.

LI —/Myo    yi      J

To obtain our first main result (7) below, we need only show A ^ mim for TV

sufficiently large. Now, Xm< [Am] +1 —rrx, since rxr is the least multiple of

rä[Aw], unless [Am] = rxr, in which case Am — rrx< 1. In either case,

mil-y0-r1H\m-rr1y ¿ m1~y°~yi.

Let G(m) be a positive function of m. We have G(w)^m£im for m sufficiently large

for any given £X > 0 if and only if ex è (log G(m))/(m log m) for m sufficiently large.

Thus, if lim^oc (log G(m))/(m logm) = 0, then we can conclude that we can

assign £X as we please, and then take m beyond some fixed lower bound and have

G(m) = m^m.

Thus, if we take G(m) successively as m, em, m1'yo'yi, 4Kxm, Kx>0, we obtain

m<mômli, em<màmli, m1'yo-yi<m6mli, 4Kim<mimli, rOT m sufficiently large.

Finally, if m is sufficiently large, \+m~y<><2 and 1/(1 — my^yi~l)<2, so, using

rTj ̂  Kxm from (iv), we obtain

[]-\-m-r0    l"i
l-^^-iJ      = *"> = ^ < m6m'4>

for m sufficiently large.
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Thus, for m sufficiently large, A S mim, and we have

(7) |/(s>(0)| S ma+à'M1-yo'y^)m.

We note that (iv) could be replaced by

We now apply the theory of full Hermite interpolation. Let ax,..., a, be distinct

complex numbers and let ky,..., kq be positive integers and let kx+ ■ ■ ■ +kq=k+ 1.

Let y'-f be constants, y'= 1, ...,q,v=0, 1,..., kf-1. J. L. Walsh [3, pp. 49-50] gives

a method of proof for the existence and uniqueness of a polynomial Pk(z), of degree

Sk, called the full Hermite interpolation polynomial, satisfying

(8) ¿T(a;.) = yf\       j=l,...,q;v = 0,l,...,ki-l.

I. S. Berezin and N. P. Zhidkov [4, pp. 145-147] construct such a polynomial, by

first constructing polynomials Pu(z) satisfying

(9) nv/(«.) » 8iA».       s=l,...,q;v = 0,l,...,ki-l,

where 8lt, and SiiV are Kronecker deltas, so that

(io) pk(z) = 22 yii)pu(z)-
i=l   i = Q

Writing

(11) w(z) = (z-aj^z-oa)*»- •  (z-«,)\

they find

Pi'>(z) - (z-^.-'7! n40 «!(z af)M Ha /JU

In the special case of A'1=A-2= • • • =kq=p, we obtain

where 1 á/'^tjr and OSjSp- 1, and w(z) = [(z-o¡i)- • -(z—a,)]'. Next, we write

Pu(z) =  2 C*z*,

so Ck=P\*](0)/k\.

Using (12), Gelfond now estimates |C*| by a complicated algebraic expansion of

"<•» - ¿i» l w(i) / {.„;

and arrives at his intricate conditions on the ot/s. We proceed by an integral estimate.
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Let a=myi. We have

ck = p^jXOW.
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27r;

f /       W(Z)        1   "-4T1   1    . NnD     \     i/z

so

w(z)     1 "-»^r1 1

Now, on ]z|=2a, since |a;| -ga, we have

(13) a g |z—o^l < 3a,

so

Next,

|C,| è 2a(3«)«"-»(3«y j- f"¿ 1i(3a)«|5i,n|)(2a)-1-"

fit- = ël (£-«*)" 1
îl=2a    w(fí     (f-aj

STÏ^>

so, using (13)

Thus,

l-Bf.nl   "S  S" 4a77 n!
2?r a«*"-1» an + 1       "-a«p-i) + n

|Ck|  ̂  2a(3a)^-'(3ayj| Qf   (3«)" ¿«jÀ*!») fl^TI  '

^ 3",3p«m(»-2-3p-1

á 2-/>-3íp32pam

< m233mam = m233mmyim,

and taking G(m) = m2 respectively 33m, we obtain m2<môm'2, 3Z»'<min"2, for m

sufficiently large. Thus,

(14) \Ck\ = expKS+yJmlogm).

We next show that for k and r nonnegative integers, we have

d"
dz>

zTea = ^z*
* = o      dzr

The proof is as follows. For r=0, k=0, we have eB*= 1, z°= 1. For r=0, k>0, we

have

a"*

¿z*
= (a)"«?« |z = a — •* »
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so we have the result. For k = 0, r>0, we have

463

dk

TV***

For k = 1, r > 0, we have

d

= zre"

2-0

= 0        —1
dz'

= 0.

-rzre*
dz

= rz7~1ea!> + oiZ7ef"

2 = 0 2 = 0 2 = 0

= 1    if r = 1,

= 0   otherwise,

-j-Z« 1    if r=l,
dz1

= 0   otherwise.

Finally, let k> 1, r>0, then

</z*
zre<"

^z*
ozr

= J (^(z'y^-V2        = r\(k)ak-7   if r S k,
2 = 0 pt-0   V/V 2 = 0 \/V

= 0   if r > k;

= (k)(k-l)---(k-r+l)ak'r   if r S k,
a

= 0   if r > k,

and the results are easily seen to be the same.

Hence, we obtain

V*1      d7

(15)

Thus,

*=o

m- 1

= 2 c*

OZr

il z'e"«'

A>.< =22 'WSto
r-0   s-1

= 2 2 A*<* 2* c*dz¡c
r-0   J-l *»0 "¿

= "2 c*/«»^).

z'e-"><

Choose AUi so |^y>j| = l. Then from (7) and (14)

1 S  2 |Cfc| ¡/<k,(0)| = mexp[(yi + S+l+S-A(l-ro-yi))mlogm]
lc-0

= m exp [(yi+l+2S-(l-f-y1-(-e))n7 logm]

= m exp ( — 8m log w).

This is a contradiction for m sufficiently large, thus proving the lemma.
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