Embedding as a Double Commutator in a Type I AW^*-Algebra\(^{(1)}\)

by

Herbert Halpern

1. Introduction. The purpose of this paper is the characterization of those C^*-algebras which can be written as their own double commutator in a type I AW^*-algebra. In a previous paper [5] the present author considered the module structure induced on a C^*-algebra \mathcal{A} by its center \mathcal{Z} which was taken to be a von Neumann algebra. It was shown that \mathcal{A} is a von Neumann algebra if and only if it could be identified with the space of all bounded module homomorphisms into \mathcal{Z} on a normed \mathcal{Z}-module. Here, an analogue of this theorem is obtained: a C^*-algebra \mathcal{A} whose center is an AW^*-algebra \mathcal{Z} can be isomorphically and isometrically embedded as a double commutator in a type I AW^*-algebra with center \mathcal{Z} if and only if \mathcal{A} can be written as the set of all bounded module homomorphisms into a normed \mathcal{Z}-module M. The topology induced on the unit sphere of \mathcal{A} by pointwise convergence on M will be the weak topology on the unit sphere of \mathcal{A}. This result can be regarded as a generalization of Sakai's theorem relating to von Neumann algebras [12] and in a certain sense it also illustrates that the generality of such an AW^*-algebra \mathcal{A} as compared to a von Neumann algebra lies in its center.

The problem of embedding an AW^*-algebra \mathcal{A} in a type I AW^*-algebra so as to preserve the sums of orthogonal projections was studied by H. Widom [18]. He found that such an embedding was possible if and only if \mathcal{A} possesses a complete set $\{\phi_n\}$ of positive module homomorphisms into the center \mathcal{Z} which mapped 1 into 1 and were completely additive on projections. He also studied those AW^*-algebras \mathcal{A} which were embedded as double commutators in type I algebras and showed that a finite AW^*-subalgebra of a type I algebra \mathcal{B} is its own double commutator in \mathcal{B}. T. Yen also studied the problem and showed that a type II\(_1\) AW^*-algebra with finite trace is its own double commutator in a type I algebra [19].

2. The weak topology. Let H be an AW^*-module [10]. For each x and y in H let $w_{x,y}$ and w_x be the functions defined on the algebra $L(H)$ of all bounded linear operators on H by $w_{x,y}(A) = (Ax, y)$ and $w_x(A) = (Ax, x)$ respectively. The weak topology on a $*$-subalgebra \mathcal{A} of $L(H)$ is the weakest topology on \mathcal{A} in

\(^{(1)}\) This work was partially supported by the National Science Foundation.

Copyright © 1970, American Mathematical Society
which each function $A \rightarrow \| w_{x,y}(A) \|$ (x, y ∈ H) or equivalently in which each function $A \rightarrow \| w_x(A) \|$ (x ∈ H) is continuous on \mathcal{A}.

Proposition 1. Let H be an AW*-module over the commutative AW*-algebra \mathcal{Z}. Let \mathcal{A} be a *-subalgebra of $L(H)$ which contains \mathcal{Z} and let \mathcal{A}_c be the algebraic \mathcal{Z}-module generated by the functions $w_{x,y}$ (x, y ∈ H) restricted to \mathcal{A}. Then \mathcal{A}_c is the set of weakly continuous \mathcal{Z}-module homomorphisms of the \mathcal{Z}-module \mathcal{A} into \mathcal{Z}.

Proof. It is sufficient to prove that \mathcal{A}_c contains the set of weakly continuous module homomorphisms because clearly \mathcal{A}_c is contained in the set of weakly continuous \mathcal{Z}-module homomorphisms. Let f be weakly continuous. There are elements x_i (1 ≤ i ≤ n) in H such that $\|f(A)\| \leq 1$ whenever $\|w_{x_i}(A)\| \leq 1$ for every $i = 1, 2, \ldots, n$. If $A \in L(H)$, let $\|A\| = (A^*A)^{1/2}$. By setting $p(A) = \sum |w_{x_i}(A)|$ for $A \in L(H)$, we define a function of $L(H)$ into \mathcal{Z} such that $p(A + B) \leq p(A) + p(B)$ and $p(CA) = \|C\|p(A)$ for every $A, B \in L(H)$ and $C \in \mathcal{Z}$. We have that $\|f(A)\| \leq 1$ whenever $p(A) \leq 1$. Therefore, $\|f(A)\| \leq p(A)$ for every A in \mathcal{A}_c. Setting $g(A) = (f(A) + f(A^*))/2$, we obtain a function of \mathcal{A}_c into the set of hermitian elements $H(\mathcal{Z})$ which is a module homomorphism when \mathcal{A}_c is considered to be an \mathcal{Z}-module. We still have that $g(A) \leq p(A)$ for every A in \mathcal{A}_c. There is a module homomorphism h of the $\mathcal{H}(\mathcal{Z})$-module $L(H)$ into $H(\mathcal{Z})$ such that $h(A) = g(A)$ for every A in \mathcal{A}_c and $h(A) \leq p(A)$ for every A in $L(H)$ [17]. Let $k(A) = h(A) - i(h(A))$. Then k is a module homomorphism of $L(H)$ into \mathcal{Z}. If $A \in L(H)$ and if U is a partial isometric operator in \mathcal{Z} with $U|k(A)| = k(A)$ [19, Lemma 2.1], then

$$\|k(A)\| = k(U^*A) \leq p(U^*A) \leq p(A).$$

We also have that $k(A) + k(A^*) = f(A) + f(A^*)$ for every A in \mathcal{A}_c. However, this means that $k(A) = f(A)$ for every A in \mathcal{A}_c. This proves that k is a module homomorphism of $L(H)$ into \mathcal{Z} which coincides with f on \mathcal{A}_c and which satisfies $\|k(A)\| \leq p(A)$.

Now for each x_i (1 ≤ i ≤ n) there is a C_i in \mathcal{Z} and a y_i in H such that $C_i y_i = x_i$ and such that $|y_i|$ is a projection in \mathcal{Z}. Let E_i be the abelian projection in $L(H)$ defined by $E_i x = (x, y_i) y_i$ [10, Lemma 13]. We have that

$$k(A(1 - E)) = k((1 - E)A) = 0,$$

where E is the least upper bound of E_1, E_2, \ldots, E_n. The projection E is in the closed two-sided ideal I_a of $L(H)$ generated by the abelian projections of $L(H)$ due to the relation

$$\text{lub} \{E_1, E_2\} - E_1 \sim E_2 - \text{glb} \{E_1, E_2\} \quad \text{[8, Theorem 5.4]}$$

and to the fact that $E_2 - \text{glb} \{E_1, E_2\}$ is abelian. There are orthogonal projections P_1, P_2, \ldots, P_m in \mathcal{Z} whose sum P is the central support of E such that each algebra $EL(H)EP_i$ is either zero or homogeneous of degree i (cf. [4, Theorem 2.1]). Since

$$f(A)(1 - P) = k(A(1 - P)) = 0$$
for every A in \mathcal{A}, it is sufficient to prove that each function P_{ij} is in \mathcal{A}. So we may assume that $EL(H)E$ is homogeneous of degree m. There are equivalent orthogonal abelian projections $\{E_i \mid 1 \leq i \leq m\}$ of sum E and partial isometric operators $\{U_{ij} \mid 1 \leq i, j \leq m\}$ such that

1. $U_{ij}U_{kl} = \delta_{il}U_{kj}$;
2. $U_{ij} = U^*_{ji}$; and
3. $U_{ii} = F_i$ for all i, j, k, l.

Thus $f(A) = k(A) = k(EAE) = \sum \tau_{F_i}(U_{ij}A)k(U_{ji})$. Here $\tau_{F_i}(B)$ denotes the unique element in $\mathcal{Z}P$ such that $\tau_{F_i}(B)F_j = F_jBF_j$ [8, Lemma 4.7]. Let z_j be an element in H such that $F_jx = (x, z_j)z_j$ [10, Lemma 13]. Then

$$\tau_{F_i}(U_{ij}A) = (U_{ij}A z_j, z_j) = (Az_j, U_{ji}z_j).$$

This proves that $f \in \mathcal{A}$. Q.E.D.

Let M be a normed vector space which is also an algebraic module over a commutative AW^*-algebra \mathcal{Z}; then M is said to be a normed \mathcal{Z}-module if $\|Ax\| \leq \|A\|\|x\|$ for every $A \in \mathcal{Z}$ and $x \in M$. A bounded module homomorphism of M into \mathcal{Z} will be called a functional of the module M. By defining operations in a pointwise fashion, we obtain an algebraic \mathcal{Z}-module structure on the set of all functionals of the module M. The function

$$\|\phi\| = \text{lub} \{\|\phi(x)\| \mid x \in M, \|x\| \leq 1\}$$

defines a norm on the \mathcal{Z}-module of functionals. With this norm the module becomes a normed \mathcal{Z}-module. We call this module the dual of M and denote it by M^\sim.

Theorem 2. Let H be an AW^*-module over the commutative AW^*-algebra \mathcal{Z} and \mathcal{A} be a \ast-subalgebra of the algebra $L(H)$ of all bounded linear operators on H such that \mathcal{A} is equal to its own second commutator in $L(H)$. For each A in \mathcal{A} let F_A be the function defined on the \mathcal{Z}-module \mathcal{A}_- (considered as a submodule of \mathcal{A}) of weakly continuous module homomorphisms of \mathcal{A} into \mathcal{Z} by $F_A(\phi) = \phi(A)$. Then $A \rightarrow F_A$ defines an isometric isomorphism of \mathcal{A} onto the dual of \mathcal{A}_-.

Proof. First let $\mathcal{A} = L(H)$. If $\Phi \in (\mathcal{A}_-)\sim$, then $\Phi(w_{x,y}) = \langle x, y \rangle$ defines a \mathcal{Z}-valued hermitian form on H such that

$$\|\langle x, y \rangle\| \leq \|\Phi\| \|w_{x,y}\| \leq \|\Phi\| \|x\| \|y\|.$$

The function $x \rightarrow \langle x, y \rangle$ is a bounded \mathcal{Z}-linear function of H into \mathcal{Z}. Therefore, there is a unique element A_y in H with $\langle x, y \rangle = (x, A_y)$ for every x in H [10, Theorem 5]. We have that $\|A_y\| \leq \|\Phi\| \|y\|$. From the uniqueness of A_y we conclude that there is an A in $L(H)$ such that $A_y = A_y$ for every y in H. Thus, $\Phi(w_{x,y}) = w_{x,y}(A)$ for every $w_{x,y}$. Since functions of the form $w_{x,y}$ generate \mathcal{A}_-, we have that $\Phi(\phi) = \phi(A)$ for every $\phi \in \mathcal{A}_-$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now we have that \(A \to F_A \) defines a \(\mathfrak{L} \)-linear function of \(\mathcal{A} \) into \((\mathcal{A}_*)^\sim \). We have that \(\|F_A\| \leq \|A\| \) since \(\|\phi(A)\| \leq \|\phi\| \|A\| \) for every \(\phi \in \mathcal{A}_* \). But
\[
\|A\| = \text{lub} \{\|w_{x,y}(A)\| \mid \|w_{x,y}\| \leq 1\}
\]
and so \(\|A\| = \|F_A\| \). Thus \(A \to F_A \) is an isometric isomorphism of \(\mathcal{A} \) into \((\mathcal{A}_*)^\sim \).

The preceding paragraph allows us to conclude that \(A \to F_A \) is onto \((\mathcal{A}_*)^\sim \).

Now assume that \(\mathcal{A} \) is an arbitrary \(* \)-subalgebra of \(L(H) \) which is equal to its own double commutator. Let \(G \) be the bounded \(\mathfrak{L} \)-linear map which takes an element in \(L(H)_* \) onto its restriction to \(\mathcal{A} \). Then \(G \) is a map of \(L(H)_* \) onto \(\mathcal{A}_* \) (Proposition 1). If \(\Phi \) is an element of \((\mathcal{A}_*)^\sim \), then \(\Phi \cdot G \) defines an element of \((L(H)_*)^\sim \). By the first part of this proof we may find an \(A \) in \(L(H) \) with \(\Phi \cdot G(\phi) = \phi(A) \) for every \(\phi \) in \(L(H)_* \). If \(A \) is not in \(\mathcal{A} \), there is a unitary operator \(U \) in the commutator of \(\mathcal{A} \) such that \(U^*AU \neq A \). Then there is an \(x \) in \(H \) with \(w_x(A) - w_{UX}(A) \neq 0 \). But \(\phi = w_x - w_{UX} \) vanishes on \(\mathcal{A} \) and so \(\phi(A) = \Phi(G(\phi)) = 0 \). This is a contradiction. Thus \(A \) is in \(\mathcal{A} \). Since every \(\phi \) in \(\mathcal{A}_* \) has an extension to a function in \(L(H)_* \), we conclude that \(\Phi(\phi) = \phi(A) \) for every \(\phi \) in \(\mathcal{A}_* \). Thus we may apply the arguments of the preceding paragraph in order to show that \(A \to F_A \) is an isometric isomorphism of \(\mathcal{A} \) onto \((\mathcal{A}_*)^\sim \). Q.E.D.

Remark. The algebra \(\mathcal{A} \) in the preceding theorem is expressed as the dual of a module whose ring of multipliers is a subalgebra of the center of \(\mathcal{A} \). This pathological feature can be removed by the following additional argument. Let \(\mathfrak{L}_0 \) be the center of \(\mathcal{A} \). The commutator \(\mathfrak{L}_0' \) of \(\mathfrak{L}_0 \) on \(H \) is a type I algebra by a proof that is entirely similar to the corresponding proof for von Neumann algebras (cf. [1, I, §2, Proposition 1 and §6, Problem 5]). The center of \(\mathfrak{L}_0' \) is \(\mathfrak{L}_0 = \mathfrak{L}_0' \). Since \(\mathfrak{L}_0 \) is the algebra of all bounded linear operators on an \(AW^* \)-module over \(\mathfrak{L}_0 \) [10, Theorem 8] and since \(\mathcal{A} \) is its own double commutator in \(\mathfrak{L}_0 \), we may conclude that \(\mathcal{A} \) is the dual of \(\mathfrak{L}_0 \)-module by Theorem 2.

3. The dual of a \(\mathfrak{L} \)-module. Let \(\mathcal{A} \) be a \(C^* \)-algebra whose center \(\mathfrak{L} \) is an \(AW^* \)-algebra. Then \(\mathcal{A} \) with its norm is a normed \(\mathfrak{L} \)-module. In this section whenever we talk about the module \(\mathcal{A} \), we shall have this particular module structure in mind. If \(\phi \in \mathcal{A}_* \) and \(A \in \mathcal{A} \), the functional \((A \cdot \phi)(B) = \phi(AB) \) is in \(\mathcal{A}_* \). This defines a right multiplication of elements of \(\mathcal{A}_* \) by \(\mathcal{A} \). Similarly, a left multiplication is defined by \((\phi \cdot A)(B) = \phi(BA) \). A functional \(\phi \) in \(\mathcal{A}_* \) is said to be positive if \(\phi(A^*A) \geq 0 \) for every \(A \) in \(\mathcal{A} \). Then \(\phi \) is positive if \(\phi(1) \geq 0 \) and \(\|\phi(1)P\| = \|P \cdot \phi\| \) for every projection \(P \) in \(\mathfrak{L} \). Indeed, if \(\|\phi(1)P\| = \|P \cdot \phi\| \) for every projection \(P \) in \(\mathfrak{L} \), then for every \(\zeta \) in the spectrum of \(\mathfrak{L} \) the relation \(|\phi_\zeta(1)| = \|\phi_\zeta\| \) is seen to be true. Here \(\phi_\zeta(A) = \phi(A) \zeta \) where \(B^\zeta \) denotes the Gelfand transform of \(B \in \mathfrak{L} \). This means that \(\phi_\zeta(A^*A) \geq 0 \) for every \(\zeta [2, 2.1.9] \). Therefore the functional \(\phi \) is positive.

Suppose now that the module \(\mathcal{A} \) is the dual of a normed \(\mathfrak{L} \)-module \(M \). Since \(\|A(\phi)\| \leq \|A\| \|\phi\| \) for every \(\phi \in M \) and \(A \in \mathcal{A} \) and since \((C_1A_1 + C_2A_2)(\phi) = C_1A_1(\phi) + C_2A_2(\phi) \) for every \(C_1, C_2 \) in \(\mathfrak{L} \) and \(A_1, A_2 \) in \(\mathcal{A} \), the function \(\phi \to \phi' \)
of \(M \) into \(\mathcal{A}^- \), where \(\phi' \) is defined by \(\phi'(A) = A(\phi) \), is a norm-decreasing \(\mathcal{Z} \)-module homomorphism of \(M \) into a submodule \(N \) of \(\mathcal{A}^- \). We have that

\[
\| A \| = \text{lub} \{ \| A(\phi) \| \mid \phi \in M, \| \phi \| \leq 1 \}
\]

\[
\leq \text{lub} \{ \| \phi(A) \| \mid \phi \in N, \| \phi \| \leq 1 \} \leq \| A \|
\]

and so we have that \(\| A \| = \text{lub} \{ \| \phi(A) \| \mid \phi \in N, \| \phi \| \leq 1 \} \). Actually, the module \(\mathcal{A} \) is identified with the dual of \(N \). Indeed, if \(\Phi \in N^- \), then \(\phi \mapsto \Phi(\phi') \) defines an element of \(M^- \). There is a unique element \(A_\phi = A \) in \(\mathcal{A} \) such that \(\Phi(\phi') = A(\phi') = \phi'(A) \) for every \(\phi \in M \). The function \(\Phi \mapsto A_\phi \) of \(N^- \) into \(\mathcal{A} \) is easily seen to be an isometric isomorphism of the \(\mathcal{Z} \)-module \(N^- \) onto the module \(\mathcal{A} \). Since we are interested in the topology on \(\mathcal{A} \) induced by pointwise convergence on \(M \), we may assume that \(M \) is embedded in \(\mathcal{A}^- \). We call this topology of pointwise convergence on \(M \) the \(\sigma(\mathcal{A}, M) \)-topology of \(\mathcal{A} \).

Let \(M \) be a submodule of \(\mathcal{A}^- \). For each bounded subset \(\{ \phi_i \} \) of \(M \) and each set \(\{ P_i \} \) of mutually orthogonal projections in \(\mathcal{Z} \) of sum 1, there is a unique \(\phi = \sum P_i \phi_i \) in \(\mathcal{A}^- \) satisfying the relation \(P_i \phi = P_i \phi_i \) for each \(P_i \). Let \(N \) be the smallest algebraic submodule of \(\mathcal{A}^- \) which contains \(M \) and is closed under the formation of such sums. Then every element \(\phi \in N \) is of the form \(\phi = \sum P_i \phi_i \) where \(\{ \phi_i \} \) is a bounded subset of \(M \) and \(\{ P_i \} \) is a set of mutually orthogonal projections in \(\mathcal{Z} \) of sum 1. The \(\mathcal{Z} \)-module \(N \) will be called the module generated by \(M \) in \(\mathcal{A}^- \).

Proposition 3. Let \(\mathcal{A} \) be a C*-algebra whose center \(\mathcal{Z} \) is an AW*-algebra. Let \(M \) be a normed \(\mathcal{Z} \)-module whose dual is the module \(\mathcal{A} \); let \(N \) be the module generated by \(M \) in \(\mathcal{A}^- \). Then the dual of the module \(N \) is also equal to \(\mathcal{A} \).

Proof. Let \(\Phi \) be a functional in \(N^- \). Then the restriction \(\Psi \) of \(\Phi \) to \(M \) is a bounded functional of the module \(M \). There is an \(A = A_\phi \) in \(\mathcal{A} \) such that \(\Psi(\phi) = \phi(A) \) for every \(\phi \in M \). Let \(\phi \in N \); there is a bounded subset \(\{ \phi_i \} \) of \(M \) and a set \(\{ P_i \} \) of mutually orthogonal projections in \(\mathcal{Z} \) of sum 1 such that \(P_i \phi = P_i \phi_i \) for each \(P_i \). Then

\[
P_i \Phi(\phi) = \Phi(P_i \phi_i) = \Psi(P_i \phi_i) = P_i \phi_i(A) = P_i \phi(A)
\]

for each \(P_i \). This means that \(\Phi(\phi) = \phi(A) \). Suppose there is a second element \(A' \) in \(\mathcal{A} \) such that \(\Phi(\phi) = \phi(A') \) for every \(\phi \in N \). Then every element of \(M \) vanishes on \(A' - A \). Because \(\mathcal{A} \) is the dual of \(M \), we have that \(A' = A \). This means that \(\Phi \mapsto A_\phi \) is a module isomorphism of \(N^- \) onto \(\mathcal{A} \). We have that

\[
\| \Phi \| = \text{lub} \{ \| \Phi(\phi) \| \mid \phi \in N, \| \phi \| \leq 1 \}
\]

\[
\leq \| A_\phi \| = \text{lub} \{ \| \phi(A_\phi) \| \mid \phi \in M, \| \phi \| \leq 1 \} \leq \| \Phi \|
\]

for every \(\Phi \in N^- \). Therefore, the map \(\Phi \mapsto A_\phi \) is an isometric isomorphism of the module \(N^- \) onto the module \(\mathcal{A} \). Q.E.D.

We need the following lemma which is known for \(\sigma \)-weakly continuous functionals on a von Neumann algebra (cf. [2, 12.2.3]).
Lemma 4. Let \mathcal{A} be a C*-algebra, E a projection in \mathcal{A} and f a bounded linear functional on \mathcal{A}. If the norm of the function $g(A) = f(EA)$ on \mathcal{A} is equal to that of f, then $g = f$.

Proof. Let \mathcal{B} be the enveloping von Neumann algebra of \mathcal{A}. We may consider \mathcal{A} as a weakly dense subset of \mathcal{B}. The functionals f and g on \mathcal{A} have unique extensions to weakly continuous functionals f' and g' respectively on \mathcal{B}. By the uniqueness of the extension we have that $g'(A) = f'(EA)$ for every A in \mathcal{B}. Since the unit sphere of \mathcal{A} is weakly dense in that of \mathcal{B} [7], we have that $\|f'\| = \|f\| = \|g\| = \|g'\|$. Therefore, $f' = g'$ and so $f = g$. Q.E.D.

We now prove the existence of a polar decomposition.

Proposition 5. Let \mathcal{A} be a C*-algebra whose center \mathcal{Z} is an AW*-algebra. Suppose that \mathcal{A} is the dual of a normed \mathcal{Z}-module M. Then given ϕ in M, there is a partial isometric operator U in \mathcal{A} such that $\theta = U \cdot \phi$ is a positive functional of the module \mathcal{A} and such that the functional $U^* \cdot \theta$ is equal to ϕ.

Proof. Let \mathcal{A}_1 be the unit sphere of \mathcal{A}. For each ϕ in M let

$$S(\phi) = \{ |\phi(A)| \mid A \in \mathcal{A}_1 \}.$$

If $|\phi(A_1)|$ and $|\phi(A_2)|$ are in $S(\phi)$, there are partial isometric operators V_1 and V_2 in \mathcal{Z} such that $V_i \phi(A_i) = |\phi(A_i)|$ $(i = 1, 2)$. There is a projection P in \mathcal{Z} such that

$$\text{lub} \{ |\phi(A_1)|, |\phi(A_2)| \} = P |\phi(A_1)| + (1 - P) |\phi(A_2)| = \phi(PV_1 A_1 + (1 - P)V_2 A_2) = |\phi(PV_1 A_1 + (1 - P)V_2 A_2)|.$$

This proves that $S(\phi)$ is monotonically increasing in \mathcal{Z}. Since \mathcal{Z} is an AW*-algebra and since $S(\phi)$ is bounded above by $\|\phi\|$, the set $S(\phi)$ has a least upper bound $|\phi|$. Actually, we have that $\|\phi\| = \||\phi||$ for given $e > 0$, there is an A in \mathcal{A}_1 such that

$$\|\phi\| - e \leq \|\phi(A)\| \leq \||\phi(A)|| \leq \|\phi\|.$$

Since $e > 0$ is arbitrary we have that $\|\phi\| = \||\phi||$. Now it is clear from the definition of $|\phi|$ that $|\phi|$ is a \mathcal{Z}-valued seminorm on M, i.e. $|\phi|$ is a map of M into \mathcal{Z}^* such that

$$|\phi + \psi| \leq |\phi| + |\psi| \quad \text{and} \quad |C\phi| = |C| |\phi|$$

for every ϕ, ψ in M and C in \mathcal{Z}.

Let ϕ be a given element in M. By considering M as a module over the hermitian elements $H(\mathcal{Z})$ of \mathcal{Z}, we can construct, by using the generalized Hahn-Banach Theorem [17], an $H(\mathcal{Z})$-module homomorphism F of M into $H(\mathcal{Z})$ such that

1. $F(\phi) = |\phi|$,
2. $F(\phi) \leq |\phi|$ for every ϕ in M, and such that
3. $\alpha F_1 + (1 - \alpha) F_2 = F$ implies $F_1 = F_2 = F$

whenever F_1 and F_2 are $H(\mathcal{Z})$-module homomorphisms satisfying (1) and (2) and α is a real number between 0 and 1. Setting $G(\phi) = F(\phi) - iF(\phi)$ for every ϕ.
in \(M \), we obtain a \(\mathcal{Z} \)-module homomorphism of \(M \) into \(\mathcal{Z} \). For every \(\psi \) in \(M \) there is a partial isometric operator \(V \) in \(\mathcal{Z} \) such that \(V G(\psi) = |G(\psi)| \). Thus we have that \(|G(\psi)| = G(V \psi) = F(V \psi) \leq |V \psi| \leq |\psi| \). Since \(\|\psi\| = \|\psi\| \) for every \(\psi \) in \(M \), the functional \(G \) is an element of \(M^\sim \); and consequently there is an element \(U \) in \(\mathcal{A} \) such that \(G(\psi) = \psi(U) \) for every \(\psi \) in \(M \). In particular we have that \(\phi(U) = |\psi| \).

Since \(\|G\| \leq 1 \), we have that \(\|U\| \leq 1 \). Let \(\theta \) be the functional in \(\mathcal{A}^\sim \) defined by \(\theta(A) = \phi(UA) \) for every \(A \) in \(\mathcal{A} \). The functional \(\theta \) is positive since

\[
\|P\theta\| \leq \|P\phi\| = \|P\phi\| = \|P\psi(U)\| = \|P\theta(1)\| \leq \|P\theta\|
\]

for every projection \(P \) in \(\mathcal{Z} \). We show that \(U \) is an extreme point of \(\mathcal{A} \). Indeed, if there are \(A_1 \) and \(A_2 \) in \(\mathcal{A} \) and \(0 < \alpha < 1 \) that satisfy \(\alpha A_1 + (1-\alpha)A_2 = U \), then

\[
\alpha \psi(A_1) + (1-\alpha)\psi(A_2) = \psi(U)
\]

for every \(\psi \) in \(M \). Setting \(F_j(\psi) = (\psi(A_j) + \psi(A_j)^*)/2 \) \((j = 1, 2) \), we obtain an \(H(\mathcal{Z}) \)-module homomorphism of \(M \) into \(H(\mathcal{Z}) \). We have that \(F_j(\psi) \leq |\psi(A_j)| \leq |\psi| \) for each \(\psi \) in \(M \). Also

\[
\alpha F_1(\psi) + (1-\alpha)F_2(\psi) = F(\phi) = |\phi|.
\]

So \(F_1(\phi) = F_2(\phi) = |\phi| \). Since \(F \) is an extreme point (relation (3)), we have that \(F_1 = F_2 = F \). Then

\[
(\psi(A_j) + \psi(A_j)^*)/2 = F(\psi)
\]

and

\[
(i\psi(A_j) + (i\psi(A_j))^*)/2 = F(i\psi)
\]

for every \(\psi \) implies \(\psi(A_j) = F(\psi) - iF(i\psi) = \psi(U) \) for every \(\psi \) in \(M \). This means that \(A_1 = A_2 = U \). Hence \(U \) is an extreme point of \(\mathcal{A} \). Therefore, \(U \) is a partial isometric operator in \(\mathcal{A} \) [6].

We complete the proof by showing that \(\theta(U^*A) = \theta(A) \) for every \(A \) in \(\mathcal{A} \). For \(\zeta \) in the spectrum of \(\mathcal{Z} \) and \(\psi \) in \(\mathcal{A}^\sim \) let \(\psi_\zeta \) be the bounded linear functional on \(\mathcal{A} \) defined by \(\psi_\zeta(A) = \psi(A)^*(\zeta) \); for \(B \) in \(\mathcal{A} \) let \(B \cdot \psi_\zeta \) be defined by \(B \cdot \psi_\zeta(A) = \psi(BA) \). Notice that \(\|B \cdot \psi_\zeta\| \leq \|B\| \|\psi_\zeta\| \). We have that \(\|\psi_\zeta\| \leq \text{glb} \{\|P\phi\| \ P \text{ a projection in } \mathcal{Z} \text{ with } \psi_\zeta(P) = 1\} \leq \text{glb} \{|\psi_\zeta| \ |\psi_\zeta| = \|\psi_\zeta\| \}. \) Indeed, given \(\varepsilon > 0 \) there is a projection \(P \) in \(\mathcal{Z} \) with \(\psi_\zeta(P) = 1 \) and \(\|P\phi(U)\| \leq |\psi(U)^*(\zeta)| + \varepsilon \). Thus \(\|\theta_\zeta\| = \|\phi_\zeta\| \). However, we also have that

\[
\|\theta_\zeta\| = \|(UU^*U) \cdot \phi_\zeta\| \leq \|(UU^*) \cdot \phi_\zeta\| \leq \|\phi_\zeta\| = \|\theta_\zeta\|.
\]

By Lemma 4 we conclude that \((UU^*) \cdot \phi_\zeta = \phi_\zeta \). Since \(\zeta \) is arbitrary we have that \(\phi(A) = \theta(U^*A) \) for all \(A \) in \(\mathcal{A} \). Q.E.D.

Let \(\mathcal{A} \) be a \(C^* \)-algebra whose center \(\mathcal{Z} \) is an \(AW^* \)-algebra. Let \(\phi \) be a positive functional in \(\mathcal{A}^\sim \). There is a set \(\{\mathcal{C}_i\} \) of positive elements in \(\mathcal{Z} \) and a set \(\{P_i\} \) of mutually orthogonal projections in \(\mathcal{Z} \) of sum \(P \) such that

\[
P_i \mathcal{C}_i(1) = P_i \text{ and } (1-P_i) \phi(1) = 0.
\]
Then setting $\phi(A) = \sum C_i P_i \phi(A)$ for A in \mathcal{A}, we obtain a positive functional ϕ of the module \mathcal{A} such that $\phi(1) = 1$. Due to the general Hahn-Banach theorem there is a positive functional ϕ_0 of the module \mathcal{A} such that $\phi_0(1) = 1$. So every positive functional in \mathcal{A}^* can be decomposed into the product of a state of the module \mathcal{A} (i.e. a positive functional taking 1 into 1) and an element in $\mathcal{Z}^+ [11], [15].$

Let ϕ be a positive functional in \mathcal{A}^* such that $\phi(1)$ is a projection. Let L_ϕ be the left ideal defined by $L_\phi = \{ A \in \mathcal{A} \mid \phi(A^*A) = 0 \}$ and let \mathcal{A}/L_ϕ be the \mathcal{A}-module reduced modulo L_ϕ. Setting $(A-L_\phi, B-L_\phi) = \phi(B^*A)$ for A and B in \mathcal{A}, we introduce a \mathcal{Z}-valued hermitian form on \mathcal{A}/L_ϕ and then using this form and the norm of \mathcal{Z}, we introduce a norm on \mathcal{A}/L_ϕ. Let H_ϕ be the set of all pairs $((x_i), (P_i)) = x$ where $\{x_i\}$ is a bounded subset of \mathcal{A}/L_ϕ and $\{P_i\}$ is a set of mutually orthogonal projections in \mathcal{Z} of sum 1. If $y = ((y_i), (Q_i)) = y_0$ then set $y = x$ if and only if $y_i Q_i P_i = x_i Q_i P_i$ for all i and j. The hermitian form on \mathcal{A}/L_ϕ has a unique extension to H_ϕ. The completion H_ϕ of H_ϕ in the norm induced by the hermitian form is an AW^*-module over \mathcal{Z} with inner product induced by the hermitian form on H_ϕ. Actually, the module H_ϕ is not faithful over \mathcal{Z} but it is faithful over $\mathcal{Z}^\phi(1)$. The representation of \mathcal{A} on \mathcal{A}/L_ϕ by left multiplication has a unique extension to a representation π_ϕ of \mathcal{A} as bounded linear operators on H_ϕ. The map π_ϕ is seen to be a module homomorphism as well as a $*$-algebra homomorphism. This map is called the canonical representation induced by ϕ of \mathcal{A} on H_ϕ [18, §§2–3].

Now let \mathcal{A} be an AW^*-algebra with center \mathcal{Z}. Suppose \mathcal{A} is a subalgebra of the algebra $L(H)$ of all bounded linear operators on an AW^*-module H over \mathcal{Z}. Let $\{A_i\}$ be a bounded subset of \mathcal{A} and let $\{P_i\}$ be a set of orthogonal projections in \mathcal{Z} of least upper bound 1. It is immaterial whether \mathcal{Z} is considered as a subalgebra of \mathcal{A} or of $L(H)$ in order to evaluate this least upper bound. Then there is a unique A in \mathcal{A} (respectively B in $L(H)$) such that $P_i A = A_i P_i$ (respectively, $P_i B = A_i P_i$) for each P_i. This means that $A = B$. This remark plus I. Kaplansky's matrix method for passing from the hermitian to the nonhermitian case ([7]; also cf. [1, I, §3, Theorem 3]) gives the following version of H. Widom's lemma [18, Lemma 4.2].

Lemma. Let H be an AW^*-module over the commutative AW^*-algebra \mathcal{Z}. Let \mathcal{A} be an AW^*-algebra with center \mathcal{Z} and let \mathcal{A} be a subalgebra of $L(H)$. Given any B in the double commutator of \mathcal{A} on H, any x_1, x_2, \ldots, x_n in H, and any $\epsilon > 0$, there is an A in \mathcal{A} whose norm is majorized by that of B such that $\|(A - B)x_i\| < \epsilon$ for every $i = 1, 2, \ldots, n$.

Proposition 6. Let \mathcal{A} be a C^*-algebra whose center \mathcal{Z} is an AW^*-algebra. Suppose \mathcal{A} is the dual of a normed \mathcal{Z}-module M. Then \mathcal{A} is an AW^*-algebra. Furthermore, let N be the smallest \mathcal{Z}-module in \mathcal{A}^* which contains M and is closed under
left and right multiplication by elements of \(\mathcal{A} \). Then the module \(\mathcal{A} \) is the dual of the module \(N \).

Proof. Let \(S \) be the set of all states in \(\mathcal{A} \). For each \(\phi \in S \), let \(\pi_\phi \) be the canonical representation of \(\mathcal{A} \) on the \(AW*-\)module \(H_\phi \) over \(L \) which is induced by \(\phi \). Let \(H = \sum \oplus H_\phi \) and let \(\pi = \sum \oplus \pi_\phi \) [10, §5]. Then \(\pi \) is a \(L \)-linear, norm-decreasing, \(*\)-homomorphism of the algebra \(\mathcal{A} \) into \(L(H) \). Now, we have that

\[
\| A \| = \text{lub} \{ \| \phi(A) \| : \phi \in M, \| \phi \| \leq 1 \}.
\]

Let \(\epsilon > 0 \) be given; there is a \(\phi \) in the unit sphere of \(M \) such that \(\| \phi(A) \| \geq \| A \| - \epsilon \). There is a partial isometry \(V \) in \(\mathcal{A} \) such that \(V \cdot \phi \) is a positive functional on the module \(\mathcal{A} \) and \((VV^*) \cdot \phi = \phi \) (Proposition 5). Then we have that \(\| V \cdot \phi \| = \| \phi \| \). There is a \(C \) in \(L^+ \) and a state \(\psi \) on the module \(\mathcal{A} \) such that \(C \psi = V \cdot \phi \). Then \(\| C \| = \| \phi(V) \| = \| \phi \| \leq 1 \). We have that \(V - L_\psi \) has norm not exceeding one in \(H_\psi \). Thus

\[
\| \pi_\phi(A)(1 - L_\psi), V - L_\psi \| = \| \psi(V^*A) \| \geq \| \phi(A) \| \geq \| A \| - \epsilon.
\]

Since \(\epsilon > 0 \) is arbitrary we have that \(\| \pi(A) \| = \| A \| \). So \(\pi \) is an isometric isomorphism of \(\mathcal{A} \) into a \(*\)-subalgebra of \(L(H) \).

We show that the double commutator \(\mathfrak{B} \) of \(\pi(\mathcal{A}) \) on \(H \) is isometrically isomorphic to the second dual \(\mathcal{A}^{**} \) of the module \(\mathcal{A} \). Let \(\phi \in \mathcal{A} \); then \(\phi \) may be written as a linear combination of four positive functionals \(\phi_i \) (1 \(\leq i \leq 4 \)) of the module \(\mathcal{A} \) [11], [15]. There are positive elements \(C_i \) (1 \(\leq i \leq 4 \)) in \(\mathcal{A} \) and states \(\psi_i \) (1 \(\leq i \leq 4 \)) of the module \(\mathcal{A} \) such that \(C_i \psi_i = \phi_i \) (1 \(\leq i \leq 4 \)). There are \(x_i \) (1 \(\leq i \leq 4 \)) in \(H \) such that

\[
\psi_i(A) = \langle \pi(A)x_i, x_i \rangle \quad (1 \leq i \leq 4)
\]

for every \(A \in \mathcal{A} \). Thus there is an element \(\phi' \) in \(\mathfrak{B}_- \) such that \(\phi'(\pi(A)) = \phi(A) \) for every \(A \in \mathcal{A} \). Because \(\pi(\mathcal{A}) \) is weakly dense in \(\mathfrak{B} \) (H. Widom's lemma), there is only one functional \(\phi' \) in \(\mathfrak{B}_- \) such that \(\phi'(\pi(A)) = \phi(A) \) for every \(A \in \mathcal{A} \). This proves that the relation \(\phi \rightarrow \phi' \) is a function of \(\mathcal{A}^- \) into \(\mathfrak{B}_- \). It is easily seen to be \(L \)-linear. For each \(\psi \in \mathfrak{B}_- \) the relation \(\phi(A) = \psi(\pi(A)) \) defines a bounded functional \(\phi \) of the module \(\mathcal{A} \) such that \(\phi' = \psi \). So the map \(\phi \rightarrow \phi' \) is onto \(\mathfrak{B}_- \). Furthermore, for each \(\phi \) in \(\mathcal{A}^- \) we have that

\[
\| \phi \| = \text{lub} \{ \| \phi(A) \| : \| A \| \leq 1 \} = \text{lub} \{ \| \phi'(A) \| : A \in \pi(\mathcal{A}), \| A \| \leq 1 \} = \| \phi' \|
\]

since the unit sphere of \(\pi(\mathcal{A}) \) is weakly dense in the unit spheres of \(\mathfrak{B} \) (H. Widom's lemma). This proves that \(\mathcal{A}^- \) is isometrically isomorphic with \(\mathfrak{B}_- \) and thus that \(\mathcal{A}^{**} \) is isometrically isomorphic with \(\mathfrak{B} \) (Remark, Theorem 2).

Let \(\rho \) be the transpose of the identity map of \(M \) into \(\mathcal{A} \), i.e. let \(\rho \) be the map of \(\mathfrak{B} \) into \(\mathcal{A} \) given by \(\phi(\rho(A)) = \phi'(A) \) for every \(A \in \mathfrak{B} \) and \(\phi \) in \(M \). Then we have that

\[
\phi(A) = \phi'(\pi(A)) = \phi(\rho(\pi(A)))
\]

for every \(\phi \) in \(M \) and \(A \) in \(\mathcal{A} \). This means that \(\rho(\pi(A)) = A \) and that \(\pi \cdot \rho(\pi(A)) \)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[\eta(A) = \rho(A) \quad \text{for every } A \in \mathcal{A}. \] Therefore the map \(\eta = \pi \cdot \rho \) is a projection of \(\mathcal{B} \) onto \(\pi(\mathcal{A}) \). We have that
\[
\|\eta(A)\| = \|\rho(A)\| = \text{lub} \{\|\phi(\rho(A))\| \mid \phi \in M, \|\phi\| \leq 1\}
\leq \text{lub} \{\|\phi'(A)\| \mid \phi \in \mathcal{A}^*, \|\phi'\| \leq 1\} \leq \|A\|
\]
for every \(A \in \mathcal{B} \). Thus the function \(\eta \) is a projection of norm 1. This proves that \(\mathcal{A} \) is an \(AW^* \)-algebra due to a result of Tomiyama [16, Theorem 5]. Also following Tomiyama, we can show that the kernel \(K \) of \(\eta \) is an ideal in \(\mathcal{B} \). Indeed, if \(A \) and \(C \) are in \(\pi(\mathcal{A}) \) and if \(\eta(B) = 0 \), then \(\eta(ABC) = A \eta(B)C = 0 \). Now if \(A \) is in \(\mathcal{B} \), then \(A \) is the weak limit of a net \(\{A_n\} \) in \(\pi(\mathcal{A}) \). This means that \[\eta(A) = \rho(A) = \lim \phi(A_nB) = \lim \phi(A_n\eta(B)) = 0 \]
for every \(\phi \in M \). This proves that \(\rho(AB) = 0 \) and that \(\eta(AB) = 0 \), and therefore that \(\eta \) is the left ideal. Similarly, we obtain that \(K \) is a right ideal and therefore that \(K \) is a two-sided ideal. By the same reasoning we see that \(K \) is weakly closed. Let \(\{E_n \mid n \in D\} \) be a maximal set of mutually orthogonal nonzero projections in \(K \). Let \(F \) be the family of finite subsets of \(D \). For each \(s \) in \(F \) let \(E_s = \sum \{E_n \mid n \in s\} \). Let \(E \) be the least upper bound of \(\{E_s \} \) in \(\mathcal{B} \). Now given an element \(\phi \) in \(M \), a nonzero projection \(P \) in \(\mathcal{B}^* \), and an \(\epsilon > 0 \), there is an \(s_0 \) in \(F \) and a nonzero projection \(Q \) in \(\mathcal{B}^P \) such that \(\|\phi'(E_s - E)Q\| \leq \epsilon \) whenever \(s \supseteq s_0 \) ([3, Lemma 4.2] and [18, Lemma 1.4]). Since
\[\phi'(E_s) = \sum \{\phi'(\eta(E_n)) \mid n \in s\} = 0, \]
we have that \(\|\phi'(E)Q\| \leq \epsilon \). Let \(\{Q_n\} \) be a maximal set of mutually orthogonal nonzero projections in \(\mathcal{B}^* \) such that \(\|\phi'(E)Q_n\| \leq \epsilon \) for every \(Q_n \). It is evident that \(\sum Q_n = 1 \) and hence that \(\|\phi'(E)\| \leq \epsilon \). Since \(\epsilon > 0 \) is arbitrary we see that \(\phi'(\rho(E)) = \phi'(E) = 0 \). Since \(\phi \) is arbitrary, we have that \(\rho(E) = 0 \); and therefore, we have that \(E \in K \). Because \(K \) is generated in the uniform topology by its projections, we have that \(AE = EA = A \) for every \(A \) in \(K \). This means that \(E \) is a projection in the center of \(\mathcal{B} \) and that \(\mathcal{B} E = K \). This proves that \(\eta \) is an isomorphism of the algebra \(\mathcal{B}(1 - E) \) onto the algebra \(\pi(\mathcal{A}) \). The map \(\eta \) is also a module isomorphism.

Let \(N \) be the smallest \(\mathcal{B} \)-module in \(\mathcal{A}^- \) which contains \(M \) and is closed under right and left multiplication by elements of \(\mathcal{A} \). We show that \(N^- \) is isometric isomorphic to \(\mathcal{A} \). Let \(\Phi \) be a bounded functional of the module \(N \). There is a functional \(\Psi \) of the module \(\mathcal{A}^- \) such that \(\Psi(\phi) = \Phi(\phi) \) for all \(\phi \) in \(N \) and such that \(\|\Psi\| = \|\Phi\| \) [11], [15]. There is an element \(B \) in \(\mathcal{B} \) such that \(\Psi(\phi) = \phi'(B) \) for all \(\phi \in \mathcal{A}^- \). If \(\Phi \in M \) and if \(A \in \mathcal{A} \), we have that
\[\Phi(A \cdot \phi) = \phi'(\rho(AB)) = \phi'(\eta(B)) = \phi'(\rho(A\eta(B))) = \phi(A \rho(B)) = (A \cdot \phi)(\rho(B)).\]
Similarly, we have that \(\Phi(\phi \cdot A) = (\phi \cdot A)(\rho(B)) \). So there is a \(B_\phi \) in \(\mathcal{A} \) such that \(\Phi(\phi) = \phi(B_\phi) \) for every \(\phi \) in \(N \). If \(B_\phi \in \mathcal{A} \) and if \(\Phi(\phi) = \phi(B_\phi) \) for every \(\phi \) in \(N \), then \(B_\phi \) is equal to \(B_\phi' \). Hence, there is a unique \(B_\phi \) in \(\mathcal{A} \) such that \(\Phi(\phi) = \phi(B_\phi) \) for every \(\phi \in N \). The function \(\Phi \rightarrow B_\phi \) is obviously a module isomorphism of the module \(N^- \) onto the module \(\mathcal{A} \). Finally we have that

\[
\|B_\phi\| = \text{lub}\{\|\phi(B_\phi)\| \mid \phi \in M, \quad \|\phi\| \leq 1\}
\leq \text{lub}\{\|\phi(B_\phi)\| \mid \phi \in N, \quad \|\phi\| \leq 1\} = \|\Phi\| \leq \|B_\phi\|.
\]

So \(\Phi \rightarrow B_\phi \) is an isometric isomorphism of \(N^- \) onto \(\mathcal{A} \). Q.E.D.

Theorem 7. Let \(\mathcal{A} \) be a \(C^* \)-algebra whose center is an \(AW^* \)-algebra \(\mathcal{Z} \). Suppose \(\mathcal{A} \) is the dual of a \(\mathcal{Z} \)-module \(M \). Let \(N' \) be the smallest \(\mathcal{Z} \)-module in the dual of the module \(\mathcal{A} \) which contains \(M \) and is closed under left and right multiplication by elements of \(\mathcal{A} \), and let \(N \) be the module generated by \(N' \) in \(\mathcal{A}^- \). Then \(\mathcal{A} \) may be embedded as a double commutator in the algebra of all bounded linear operators on an \(AW^* \)-module over \(\mathcal{Z} \) so that the weak topology and the \(\sigma(\mathcal{A}, N) \)-topology coincide on the unit sphere of \(\mathcal{A} \).

Proof. Let \(S \) be the set of all positive functionals \(\phi \) in \(N \) such that \(\phi(1) \) is a projection in \(\mathcal{Z} \). For each \(\phi \) in \(S \) let \(\pi_\phi \) be the canonical representation of \(\mathcal{A} \) on the \(AW^* \)-module \(H_\phi \) over \(\mathcal{Z} \phi(1) \) which is induced by \(\phi \). Then \(H_\phi \) may be considered as an \(AW^* \)-module over \(\mathcal{Z} \). Let \(H = \sum \oplus \{ H_\phi \mid \phi \in S \} \) and let \(\pi = \sum \oplus \{ \pi_\phi \mid \phi \in S \} \).

The \(AW^* \)-module \(H \) is a faithful \(AW^* \)-module over \(\mathcal{Z} \). Indeed, if \(P \) is a nonzero projection in \(\mathcal{Z} \), then

\[
\text{lub}\{\|\phi(P)\| \mid \phi \in M, \quad \|\phi\| \leq 1\} = 1.
\]

So \(\|\phi(P)\| \neq 0 \) for some \(\phi \) in the unit sphere of \(M \). Let \(V \) be a partial isometry in \(\mathcal{A} \) such that \(V \cdot \phi \) is a positive functional and such that \(VV^* \cdot \phi = \phi \) (Proposition 5). Then \((V \cdot \phi)(P) \neq 0 \) because \(|\phi(P)|^2 = |\phi(VV^*P)|^2 \leq \phi(V)\phi(VP) \). There is a \(C \) in \(\mathcal{Z}^+ \) such that \(\phi(CV) \) is a nonzero projection in \(\mathcal{Z} \) majorized by \(P \). Setting \(\psi = CV \cdot \phi \), we obtain an element \(\psi \) in \(S \) such that \(P(1 - L_\psi) \neq 0 \). Hence \(H \) is a faithful \(AW^* \)-module over \(\mathcal{Z} \).

We show that the map \(\pi \) is an isometry. Let \(A \) be a nonzero positive element in \(\mathcal{A} \). It is enough to show that \(\|\pi(A)\| = \|A\| \). Let \(\epsilon > 0 \) be an arbitrary number less than \(\|A\| \). There is a \(\phi \) in the unit sphere of \(N \) such that \(\|\phi(A)\| > \|A\| - \epsilon \) and thus there is a nonzero projection \(P \) in \(\mathcal{Z} \) such that

\[
|P\phi(A)| \geq (\|A\| - \epsilon)P.
\]

There is a partial isometry \(V \) in \(\mathcal{A} \) such that \(V \cdot \phi \) is a positive functional and such that \(VV^* \cdot \phi = \phi \) (Proposition 5). Then we have that

\[
(\|A\| - \epsilon)^2P \leq |\phi(A)|^2 \leq (\|A\| - \epsilon)^2P.
\]

So there is a positive element \(C \) in \(\mathcal{Z} \) such that \(CV \cdot \phi = \psi \) is in \(S \) and such that
Since \(PV \cdot \phi(1) \leq P \), we see that \(CP \geq P \). Hence, we have that

\[
\begin{align*}

\| A - e \|^2 P & \leq \| P \phi(V) \phi(V^A) \| \leq \| A \| \| P \phi(V) \phi(V^A) \| \\
& \leq \| A \| \| P \phi(1) \phi(A) \| \leq \| A \| \| \phi(A) \|.
\end{align*}
\]

This proves that \(\text{lub} \{ \| \phi(A) \| : \phi \in \mathcal{S} \} = \| A \| \) and that \(\| \pi(A) \| = \| A \| \).

We show that \(\pi(\mathcal{A}) \) is equal to its double commutator \(\mathcal{B} \) on \(H \). Let \(B \) be an element in \(\mathcal{B} \). There is a net \(\{ A_n \} \) in the sphere of \(\mathcal{A} \) about the origin of radius \(\| B \| \) such that \(\lim \pi(A_n) = B \) weakly in \(L(H) \) because \(\pi(\mathcal{A}) \) is an \(AW^* \)-algebra with center \(\mathcal{Z} \) (Proposition 6) and thus Widom's lemma may be employed. Let \(\phi \in N \) and let \(V \cdot \phi \) be the polar decomposition of \(\phi \). There is a sequence \(\{ P_m \} \) of orthogonal projections in \(\mathcal{Z} \) of sum \(P \) such that \(P_m \phi(V) \) has inverse \(C_m \) in \(\mathcal{Z} P_m \) and such that \((1 - P) \phi(V) = 0 \). By the hypothesis on \(N \), we see that \(\psi = \sum P_m (C_m V \cdot \phi) \) is in \(N \) and therefore in \(S \) and that \(\phi(V) \psi = V \cdot \phi \). Setting \(x = 1 - L \psi \), we have that

\[
\lim (\pi(A_n)x, \pi(V)x) = (Bx, \pi(V)x)
\]

uniformly in \(\mathcal{Z} \). This means that \(\{ \phi(A_n) \} \) is a Cauchy net in the uniform topology of \(\mathcal{Z} \) and therefore \(\{ \phi(A_n) \} \) converges uniformly to an element \(\Phi(\phi) \) in the sphere of radius \(\| \phi \| \| B \| \) about the origin. Hence, we see that \(\phi \rightarrow \Phi(\phi) \) defines an element \(\Phi \) in \(N^* \) and therefore we have an element \(A_0 \) in \(\mathcal{A} \) such that \(\Phi(\phi) = \phi(A_0) \) for every \(\phi \) in \(N \). Now for arbitrary \(\psi \) in \(S \) we have that \(\psi \cdot C \) is in \(N \) and therefore that

\[
(\pi(A_0)\pi(C)x, \pi(A)^*x) = \lim (A \cdot \psi \cdot C)(A_0)
= \lim (\pi(A_0)\pi(C)x, \pi(A)^*x) = (B\pi(C)x, \pi(A)^*x)
\]

where \(x = 1 - L \psi \). Therefore, we have proved that \(((\pi(A_0) - B)y, z) = 0 \) for all \(y, z \) in \(K = \{ \pi(A)x : A \in \mathcal{A} \} \). Now given \(A \) in \(\mathcal{A} \), there is a net \(\{ C_n \} \) in \(\mathcal{A} \) such that \(\{ \pi(C_n) \} \) converges weakly to \((\pi(A_0) - B)\pi(A) \) since \((\pi(A_0) - B)\pi(A) \) is in \(\mathcal{B} \). Therefore,

\[
\| (\pi(A_0) - B)\pi(A) \| \leq \lim \| (\pi(A_0) - B)\pi(A) \| x, \pi(C_n)x = 0.
\]

This means that \(\pi(A_0) - B \) vanishes on \(K \) and therefore on \(H_\psi \). Since \(\psi \) is arbitrary, we conclude that \(\pi(A_0) = B \) and therefore that \(\pi(\mathcal{A}) = \mathcal{B} \).

We now identify \(\mathcal{A} \) with \(\mathcal{B} \) and we show that the \(\sigma(\mathcal{A}, N) \)-topology and the \(\sigma(\mathcal{A}, \mathcal{A}_0) \)-topology coincide on the unit sphere of \(\mathcal{A} \). For each \(\psi \in S \) let \(E_\psi \) be the projection of \(H \) on \(H_\psi \) [10, §6]. By the definition of \(H \) we have that the least upper bound of the family \(\{ E_\psi : \psi \in S \} \) is 1. Let \(x \) be in \(H \) and let \(e \) be a strictly positive number. There is a set \(\{ P_i \} \) of mutually orthogonal projections in \(\mathcal{Z} \) of sum 1 such that for each \(i \) there is a finite subset \(n(i) \) of \(S \) with

\[
P_i(|x|^2 - \sum \{ |E_\psi x|^2 : \psi \in n(i) \}) < e^2 P_i
\]

since

\[
\sum \{ |E_\psi x|^2 : \psi \in S \} = |x|^2
\]

[3, Lemma 4.2]. Let \(i \) be fixed and let \(n(i) = \{ \psi_1, \ldots, \psi_k \} \). Let \(E_{\psi_k} = E_k \) and let
There is a set \(\{Q_i\} \), not depending on \(k \), of mutually orthogonal projections in \(\mathcal{Z} \) of sum \(P \), such that for each \(k = 1, 2, \ldots, n \) there is a set \(\{A_k\} \) in \(\mathcal{A} \) with \(\{\phi_k(A_k, A_k)\} \) bounded and

\[
\left\| \sum_j Q_j A_k x_k - E_k x \right\| < \varepsilon n^{-1}.
\]

Let \(y_j = \sum_k Q_j A_k x_k \). Then we have that

\[
|Q_j(y_j - x)| \leq |Q_j(y_j - \sum E_k x)| + |Q_j(1 - \sum E_k) x| \leq \sum_k |Q_j(A_k x_k - E_k x)| + |Q_j(1 - \sum E_k) x| \leq 2\varepsilon,
\]

and

\[
|y_j| \leq |Q_j(y_j - \sum E_k x)| + |Q_j \sum E_k x| \leq (\varepsilon + (\sum E_k x)^2)^{1/2}) Q_j \leq (\varepsilon + \|x\|^2) Q_j.
\]

Then setting

\[
\phi_j(A) = (Ay_j, y_j) = Q_j \sum_k \phi_k(A_k A A_k),
\]

we obtain a positive functional in \(N \) of norm not exceeding \((\varepsilon + \|x\|)^2\). There is a unique \(y_j \) (respectively \(\theta_j \)) in \(H \) (respectively in \(N \)) such that \(Q_j y_j = y_j \) (respectively \(Q_j \theta_j = \phi_j \)) for each \(Q_j \) and \((1 - P_j) y_j = 0 \) (respectively, \((1 - P_j) \theta_j = 0 \)). We have that \(\theta_j(A) = (Ay_j, y_j) \) for each \(A \) in \(\mathcal{A} \) and that \(\|\theta_j\| \leq (\varepsilon + \|x\|)^2 \). Then we have that

\[
P_j|(Ax, x)| \leq \|A\| |P_j(x - y_j)| |P_j x|
+ \|A\| |P_j(x - y_j)| |P_j y_j| + |\theta_j(A)| \leq 2\varepsilon \|A\| \|x + 2\|x\|\| |P_j + |\theta_j(A)|.
\]

Since \(\theta_j(1) \leq (\varepsilon + \|x\|)^2 P_j \), there is a unique \(\theta \) in \(N \) such that \(P_j \theta = \theta_j \) for each \(P_j \). This means that

\[
|(Ax, x)| \leq 2\varepsilon \|A\| \|x + 2\|x\|\| + |\theta(A)|
\]

for every \(A \) in \(\mathcal{A} \). Now it becomes obvious that the \(\sigma(\mathcal{A}, N) \)-topology is finer than the weak topology on the unit sphere of \(\mathcal{A} \).

Conversely, let \(\phi \) be a functional in \(N \) and let \(U \) be a partial isometry of \(\mathcal{A} \) such that \(U \cdot \phi \) is positive and \(U U^* \cdot \phi = \phi \). There is a sequence \(\{P_n\} \) of mutually orthogonal projections in \(\mathcal{Z} \) such that \(P_n \phi(U) = C_n \) is invertible with inverse \(D_n \) in \(\mathcal{Z} P_n \) and such that \((1 - \sum P_n) \phi(U) = 0 \). Then \(\sum D_n U \cdot \phi = \psi \) is in \(N \). Since \(\phi(1) = \sum P_n \), the functional \(\psi \) is in \(S \). We then have that \(\phi(A) = (Ax, y) \) where \(x = \sum C_n (1 - L_n) \) and \(y = U(1 - L_n) \). Thus a net \(\{A_n\} \) in the unit sphere of \(\mathcal{A} \) converges to \(A \) in the \(\sigma(\mathcal{A}, N) \)-topology whenever \(\{A_n\} \) converges to \(A \) in the \(\sigma(\mathcal{A}, \mathcal{A}) \)-topology. Q.E.D.

Remark. In the notation of Theorem 7 we have that the closure of \(N \) in the uniform topology of \(\mathcal{A}^* \) is equal to the closure of \(\mathcal{A} \) in \(\mathcal{A}^* \) and that \(\mathcal{A} \) is the dual of the closure of the module \(N \).
Bibliography

ILLINOIS INSTITUTE OF TECHNOLOGY,
CHICAGO, ILLINOIS