NONLINEAR EVOLUTION EQUATIONS AND PRODUCT INTEGRATION IN BANACH SPACES

BY
G. F. WEBB

Abstract. The method of product integration is used to obtain solutions to the nonlinear evolution equation \(g' = Ag \) where \(A \) is a function from a Banach space \(S \) to itself and \(g \) is a continuously differentiable function from \([0, \infty)\) to \(S \). The conditions required on \(A \) are that \(A \) is dissipative on \(S \), the range of \((e - \varepsilon A) = S\) for all \(\varepsilon \geq 0 \), and \(A \) is continuous on \(S \).

1. Introduction. Let \(S \) be a Banach space and let \(A \) be a mapping from a subset of \(S \) to \(S \). An evolution equation is a system \(g' = A(g) \), \(g(0) = p \), where \(g \) is a continuous function from \([0, \infty)\) to \(S \) and \(p \) is a point in \(S \). In [3] F. Browder has considered nonlinear evolution equations in which \(S \) is the Hilbert space and \(A \) is continuous, bounded, and dissipative on \(S \). In recent articles Y. K"omura [12], T. Kato [10], and M. Crandall and A. Pazy [5] have considered nonlinear evolution equations in which \(S \) is the Hilbert space and \(A \) is maximal dissipative, not necessarily continuous, and is the infinitesimal generator of a semigroup of nonlinear nonexpansive transformations on \(S \).

The object of this paper is to obtain solutions to an evolution system in a general Banach space using the method of product integration. A definition of product integration is given as follows:

Suppose that \(p \) is in \(S \), \(x > 0 \), and \(z \) is a point in \(S \) such that if \(c > 0 \) there exists a chain \(\{s_i\}_{i=0}^{n} \) from 0 to \(x \) such that if \(\{s_i\}_{i=0}^{n} \) is a refinement of \(\{s_i\}_{i=0}^{n} \) then

\[
\left| z - \prod_{i=1}^{n} \left(e - (t_i - t_{i-1}) A \right)^{-1} p \right| < c.
\]

(Note that \(e \) denotes the identity map on \(S \), \((e - (t_i - t_{i-1}) A)^{-1} \) denotes the inverse map of \(e - (t_i - t_{i-1}) A \), \(\prod_{i=1}^{n} (e - (t_i - t_{i-1}) A)^{-1} p = (e - (t_1 - t_0) A)^{-1} p \), and if \(j \) is an integer in \([2, n]\)

\[
\prod_{i=1}^{j} (e - (t_i - t_{i-1}) A)^{-1} p = (e - (t_j - t_{j-1}) A)^{-1} \prod_{i=1}^{j} (e - (t_i - t_{i-1}) A)^{-1} p,
\]

where the product operation is composition of mappings.) Then \(z \) is said to be the product integral of \(A \) with respect to \(p \) from 0 to \(x \) and is denoted by \(\prod_{i=0}^{n} (e - dIA)^{-1} p \).

Received by the editors March 20, 1969 and, in revised form, August 20, 1969.

AMS Subject Classifications. Primary 3495, 3436; Secondary 3535, 3537.

Key Words and Phrases. Nonlinear evolution equations, product integration, dissipative mapping, semigroup of nonlinear nonexpansive transformations, infinitesimal generator.

Copyright © 1970, American Mathematical Society
In [1] G. Birkhoff and in [16] J. Neuberger have used product integration to solve evolution systems where the mapping A is Lipschitz continuous. In this paper the product integration method will be extended to mappings not necessarily Lipschitz continuous.

2. An existence theorem. Let A be a mapping from a subset of S to S such that the following are true:

(I) A is dissipative on its domain D_A, i.e., if $u, v \in D_A$ and $\epsilon \geq 0$ then $\| (e - \epsilon A) u - (e - \epsilon A) v \| \geq \| u - v \|$

(II) There is an open subset C of S such that $C \subseteq D_A$ and a positive number α such that if $0 \leq \epsilon < \alpha$ then $C \subseteq R(e - \epsilon A)$ (where $R(e - \epsilon A)$ denotes the range of $(e - \epsilon A)$).

(III) A is continuous on C.

Note that by (I) if $\epsilon > 0$ then $(e - \epsilon A)$ is 1-1 on D_A and by (II) if $0 \leq \epsilon < \alpha$ and $q \in C$ then $q \in D_{e - \epsilon A}$. If $0 \leq \epsilon < \alpha$ and $q \in R(e - \epsilon A)$ let $L(\epsilon) q = (e - \epsilon A)^{-1} q$. By (I) $L(\epsilon)$ is nonexpansive on $R(e - \epsilon A)$, i.e., if $u, v \in R(e - \epsilon A)$ then

$$\| L(\epsilon) u - L(\epsilon) v \| \leq \| u - v \|$$

Theorem. Let A satisfy conditions (I), (II), and (III). If $p \in C$ and

$$\gamma_p = \min \{ \text{dist} (p, \partial C) / \| Ap \|, \alpha \},$$

then there is a continuously differentiable function g_p from $[0, \gamma_p)$ to S such that $g_p(0) = p$ and if $0 \leq \epsilon < \gamma_p$, $g_p'(x) = Ag_p(x)$ and $g_p(x) = \int_0^x (e - \epsilon A)^{-1} p$. The theorem will be proved by means of a sequence of lemmas each of which is under the hypothesis of the theorem.

Lemma 1.1. If $q \in C$ and $0 \leq x, y < \alpha$, then $\| L(x) q - L(y) q \| \leq |x - y| \cdot \| Aq \|$

Proof. Using (2) we have that

$$\| L(x) q - L(y) q \| = \| L(x) q - L(x) (e - x A) L(y) q \|
= \| q - (e - x A) L(y) q \|
= \| q - [(x/y)(e - y A)] L(y) q + (1 - x/y) L(y) q \|
= |1 - x/y| \| q - L(y) q \|
\leq |1 - x/y| \| (e - y A) q - q \|
= |x - y| \| Aq \|.$$

Lemma 1.2. Let $q \in C$, let $0 < x < \gamma_q$, and let $\{ s_i \}_{i=0}^m$ be a chain from 0 to x. If j is an integer in $[1, m]$ then

(3) $$\int_{i=1}^{i-1} L(s_i - s_{i-1}) q \in C,$$

(4) $$\int_{i=1}^{j} L(s_i - s_{i-1}) q - q \leq s_j \| Aq \|.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and

$$(5) \quad \left\| A \prod_{i=1}^{j} L(s_i - s_{i-1})q \right\| \leq \|Aq\|.$$

(Note that $\prod_{i=1}^{0} L(s_i - s_{i-1})$ denotes the identity map, i.e., $\prod_{i=1}^{0} L(s_i - s_{i-1})q = q$.)

Proof. The proof is by induction. For $j = 1$, $\prod_{i=1}^{1} L(s_i - s_{i-1})q = q \in C$,

$$\left\| \prod_{i=1}^{1} L(s_i - s_{i-1})q-q \right\| \leq s_1 \cdot \|Aq\|$$

(by Lemma 1.1), and

$$A \prod_{i=1}^{1} L(s_i - s_{i-1})q = \|1/s_1[L(s_i - s_0)q - q]\| \leq \|Aq\|.$$

Suppose that j is an integer in $[1, m-1]$, $\prod_{i=1}^{j+1} L(s_i - s_{i-1})q \in C$,

$$\left\| \prod_{i=1}^{j+1} L(s_i - s_{i-1})q-q \right\| \leq s_j \cdot \|Aq\|,$$

and $\|A \prod_{i=1}^{j} L(s_i - s_{i-1})q\| \leq \|Aq\|$. Then,

$$\prod_{i=1}^{j+1} L(s_i - s_{i-1})q \in C \subseteq D_{t_{j+1} - t_j}.$$

Further,

$$\left\| \prod_{i=1}^{j+1} L(s_i - s_{i-1})q-q \right\| = \left\| \sum_{i=1}^{j+1} \left[\prod_{k=1}^{i} L(s_k - s_{k-1})q - \prod_{k=1}^{i+1} L(s_k - s_{k-1})q \right] \right\|$$

(note that $\prod_{k=j+2}^{j+1} L(s_k - s_{k-1})$ is the identity map)

$$\leq \sum_{i=1}^{j+1} \left\| L(s_i - s_{i-1})q-q \right\|$$

$$\leq s_{j+1} \cdot \|Aq\|.$$

Moreover,

$$\left\| A \prod_{i=1}^{j+1} L(s_i - s_{i-1})q \right\| = \left\| \left(\frac{1}{s_{j+1} - s_j} \right) \prod_{i=1}^{j+1} L(s_i - s_{i-1})q - \prod_{i=1}^{j} L(s_i - s_{i-1})q \right\|$$

$$\leq \|Aq\||.$$

Lemma 1.3. Let $q \in C$, let $0 < x < y_q$, and let $\{t_i\}_{i=0}^{n}$ be a chain from 0 to x. If j is an integer in $[1, n]$ then

$$(6) \quad \prod_{i=j}^{n} L(t_i - t_{i-1})q - q = \sum_{i=j}^{n} (t_i - t_{i-1})A \prod_{k=f}^{i} L(t_k - t_{k-1})q.$$
Proof.
\[
\prod_{i=f}^{n} L(t_i-t_{i-1})q - q = \sum_{i=f}^{n} \left[\prod_{k=j}^{i} L(t_k-t_{k-1})q - \prod_{k=j}^{i-1} L(t_k-t_{k-1})q \right] \\
= \sum_{i=j}^{n} (t_i-t_{i-1})A \prod_{k=j}^{i} L(t_k-t_{k-1})q \\
= \sum_{i=j}^{n} (t_i-t_{i-1})A \prod_{k=j}^{i} L(t_k-t_{k-1})q.
\]

Let \(p \in C \), let \(c > 0 \), and let \(m \) be a nonnegative integer. The number-sequence \(\{s_i\}_{i=0}^{m} \) is said to have property \(P_c \) provided that the following are true: (i) \(s_0 = 0 \), \(s_m < \gamma_p \) (ii) \(\{s_i\}_{i=0}^{m} \) is increasing, and (iii) if \(h \) is an integer in \([0, m-1] \), \(s_h \leq x \leq s_{h+1} \), \(\{t_i\}_{i=0}^{m} \) is a chain from \(s_h \) to \(x \), and \(j \) is an integer in \([0, n] \), then

\[
\left| A \prod_{k=j}^{n} L(t_k-t_{k-1}) - \prod_{i=j}^{n} L(s_i-s_{i-1})p \right| \leq c.
\]

Lemma 1.4. Let \(p \in C \), let \(c > 0 \), and let \(\{s_i\}_{i=0}^{m} \) have property \(P_c \). There is a number \(s_{m+1} \) such that \(s_m < s_{m+1} < \gamma_p \) and \(\{s_i\}_{i=0}^{m+1} \) has property \(P_c \).

Proof. Lemma 1.4 follows from Lemma 1.2 and the continuity of \(A \) at \(\prod_{i=1}^{m} L(s_i-s_{i-1})p \).

Lemma 1.5. Let \(p \in C \), let \(c > 0 \), and let \(\{s_i\}_{i=0}^{m} \) have property \(P_c \). Suppose that \(y \) is a number such that \(s_m < y < \gamma_p \) and if \(s_{m+1} \) is a number such that \(s_m < s_{m+1} < y \) then \(\{s_i\}_{i=0}^{m+1} \) has property \(P_c \). Then, if \(s_{m+1} = y \), \(\{s_i\}_{i=0}^{m+1} \) has property \(P_c \).

Proof. Let \(q = \prod_{i=1}^{n} L(s_i-s_{i-1})p \), let \(\{t_i\}_{i=0}^{n} \) be a chain from \(s_m \) to \(y \), and let \(d > 0 \). There is a positive number \(b \) such that if \(u \in C \) and \(\|u - \prod_{i=1}^{n} L(t_i-t_{i-1})q\| < b \) then

\[
\|Au - \prod_{i=1}^{n} L(t_i-t_{i-1})q\| < d.
\]

There is a positive number \(r \) such that \(t_{n-1} - r < t_n = y \) and \(t_n - r < b/\|Ap\| \). By Lemmas 1.1 and 1.2

\[
\left| L(r-t_{n-1}) \prod_{i=1}^{n-1} L(t_i-t_{i-1})q - \prod_{i=1}^{n} L(t_i-t_{i-1})q \right| \leq (t_n-r) \cdot \|Ap\| < b.
\]

Then, if \(j \) is an integer in \([0, n-1] \)

\[
\left| A \prod_{i=1}^{j} L(t_i-t_{i-1})q - A \prod_{i=1}^{n} L(t_i-t_{i-1})q \right| \\
\leq \left| A \prod_{i=1}^{j} L(t_i-t_{i-1})q - A \prod_{i=1}^{n-1} L(t_i-t_{i-1})q \right| \\
+ \left| A \prod_{i=1}^{n-1} L(t_i-t_{i-1})q - A \prod_{i=1}^{n} L(t_i-t_{i-1})q \right| \\
< c + d.
\]
Then, if \(j \) is an integer in \([0, n]\)
\[
\left\| A \sum_{i=1}^{j} L(t_i - t_{i-1})q - A \sum_{i=1}^{n} L(t_i - t_{i-1})q \right\| \leq c
\]
and so the lemma is established.

Lemma 1.6. Let \(p \in C \), let \(c > 0 \), and suppose that \(\{s_i\}_{i=0}^{\infty} \) is an infinite increasing number-sequence such that \(\lim \{s_i\}_{i=0}^{\infty} < \gamma_p \) and if \(n \) is a nonnegative integer \(\{s_i\}_{i=0}^{n} \) has property \(P_c \). Then there is a positive integer \(m \) and a sequence \(\{r_i\}_{i=0}^{m+1} \) such that if \(i \) is an integer in \([0, m]\) \(s_i = r_i, r_{m+1} = \lim \{s_i\}_{i=0}^{\infty}, \) and \(\{r_i\}_{i=0}^{m+1} \) has property \(P_c \).

Proof. Let \(q_0 = p \) and if \(n \) is a positive integer let \(q_n = L(s_n - s_{n-1})q_{n-1} \). If \(n \) is a positive integer then \(\|q_n - q_{n-1}\| = \|L(s_n - s_{n-1})q_{n-1} - q_{n-1}\| \leq (s_n - s_{n-1})\|Ap\| \). Let \(s = \lim \{s_i\}_{i=0}^{\infty} \), let \(q = \lim \{q_i\}_{i=0}^{\infty} \), and note that \(q \in C \) since \(\|q_n - p\| < s \cdot \|Ap\| \) and so \(\|q - p\| < \text{dist}(p, \partial C) \). There is a positive number \(b \) such that if \(u \in C \) and \(\|u - q\| < b \) then \(\|Au - Aq\| < c/2 \). Let \(m \) be a positive integer such that \(\|q - q_m\| < b/2 \) and \(s - s_m < b/2 \|Ap\| \). Let \(0 < x \leq s - s_m \), let \(\{t_i\}_{i=0}^{\infty} \) be a chain from 0 to \(x \), and let \(j \) be an integer in \([0, n]\). By Lemma 1.2
\[
\left\| \sum_{i=1}^{j} L(t_i - t_{i-1})q_{m} - q_{m} \right\| \leq t_j \cdot \|Ap\| < b/2
\]
and so
\[
\left\| A \sum_{i=1}^{j} L(t_i - t_{i-1})q_{m} - Aq \right\| < c/2.
\]
Then, if \(j \) is an integer in \([0, n]\)
\[
\left\| A \sum_{i=1}^{j} L(t_i - t_{i-1})q_{m} - A \sum_{i=1}^{n} L(t_i - t_{i-1})q_m \right\|
\leq \left\| A \sum_{i=1}^{j} L(t_i - t_{i-1})q_{m} - Aq \right\| + \left\| Aq - A \sum_{i=1}^{n} L(t_i - t_{i-1})q_m \right\|
\leq c
\]
and so the lemma is established.

Lemma 1.7. Let \(p \in C \), let \(c > 0 \), and let \(0 < x < \gamma_p \). There is a chain \(\{s_i\}_{i=0}^{\infty} \) from 0 to \(x \) such that \(\{s_i\}_{i=0}^{n} \) has property \(P_c \).

Proof. By Lemma 1.4 there is an infinite increasing number-sequence \(\{s_i\}_{i=0}^{\infty} \) such that \(\lim \{s_i\}_{i=0}^{\infty} < \gamma_p \) and if \(n \) is a nonnegative integer \(\{s_i\}_{i=0}^{n} \) has property \(P_c \). Let \(M \) denote the set of all such sequences. If \(s = \{s_i\}_{i=0}^{\infty} \) is in \(M \) let \(z(s) \) denote the limit of \(s \). If each of \(s \) and \(t \) belongs to \(M \) define \(s \leq t \) only in case \(s \) is \(t \) or if \(n \) is the greatest nonnegative integer such that if \(i \) is an integer in \([0, n]\) \(s_i = t_i \), then \(z(s) \leq t_{n+1} \). Then, \(\leq \) is a partial ordering of \(M \).

Assume that there exists no member \(s \) of \(M \) such that \(z(s) > x \). Let \(L \) be a linearly ordered subset of \(M \) and let \(y \) be the smallest positive number such that if \(s \) is in
Let \(\{z(0)\}_{i=0}^{\infty}, \{z(1)\}_{i=0}^{\infty}, \ldots \) be an increasing sequence of points in \(L \) such that \(z(s(0)), z(s(1)), \ldots \) converges to \(y \). For each nonnegative integer \(i \) define
\[
y_i = \sup_k s_i(k).
\]
Then, \(y_i \leq y_{i+1} \) and \(\lim_{i \to \infty} y_i = y \).

Suppose there is a positive integer \(n \) such that \(y_n = y \). Then there is a least positive integer \(n \) such that \(y_n = y \) and there must exist an integer \(k \) such that \(s_i(k) = s_j(j) \) for each integer \(i \) in \([0, n-1]\) and \(j \geq k \). In this case \(s_n(k), s_n(k+1), \ldots \) converges to \(y \) and so by Lemma 1.5 \(\{s_i\}_{i=0}^{\infty} \) is an upper bound for \(L \). If there is no positive integer \(n \) such that \(y_n = y \) then \(y_n < y \) for every \(n \), \(\{y_n\}_{n=0}^{\infty} \) is in \(M \), \(\{y_n\}_{n=0}^{\infty} \) is an upper bound for \(L \).

Thus, if \(L \) is a linearly ordered subset of \(M \), then \(L \) is bounded by a member of \(M \). By Zorn’s lemma there exists \(u \in M \) such that \(u \) is maximal. But then we have a contradiction since \(z(u) \leq x < y \) and by Lemma 1.6 there exists \(t \in M \) such that \(u < t \).

Lemma 1.8. Let \(p \in C \), let \(c > 0 \), and let \(0 < x < \gamma_p \). There is a chain \(\{s_i\}_{i=0}^\infty \) from \(0 \) to \(x \) such that if \(\{t_i\}_{i=0}^\infty \) is a refinement of \(\{s_i\}_{i=0}^\infty \) then

\[
\left| \sum_{i=1}^n L(t_i-t_{i-1})p - \sum_{i=1}^m L(s_i-s_{i-1})p \right| < c.
\]

Proof. Let \(\{s_i\}_{i=0}^\infty \) be a chain from \(0 \) to \(x \) such that \(\{s_i\}_{i=0}^\infty \) has property \(P_c \). Let \(\{t_i\}_{i=0}^\infty \) be a refinement of \(\{s_i\}_{i=0}^\infty \), i.e., there is an increasing sequence \(u \) such that \(u_0 = 0, u_n = n \), and if \(i \) is an integer in \([0, m]\) \(s_i = t_u \). If \(i \) is an integer in \([1, m]\) let \(K_i = \sum_{i=1}^m L(t_j-t_{j-1}) \), let \(J_i = \sum_{i=1}^m L(s_j-s_{j-1}) \), let \(K_m+1 = e \), and let \(J_0 = e \). Then,

\[
\left| \sum_{i=1}^n L(t_i-t_{i-1})p - \sum_{i=1}^m L(s_i-s_{i-1})p \right| = \sum_{i=1}^m \left| K_i p - J_i p \right|
\]

\[
\leq \sum_{i=1}^m \|K_i J_{i-1} p - J_{i-1} p\|
\]

\[
\leq \sum_{i=1}^m \|K_i J_{i-1} p - L(s_i-s_{i-1})J_{i-1} p\|
\]

\[
\leq \sum_{i=1}^m \|e - (s_i-s_{i-1})A \| K_i J_{i-1} p - J_{i-1} p\|
\]

\[
= \sum_{i=1}^m \left[\sum_{j=1}^{u_i} L(t_j-t_{j-1})J_{i-1} p - J_{i-1} p \right] - (s_i-s_{i-1})AK_i J_{i-1} p.
\]
Proof of the theorem. Let \(p \in C \). If \(x = 0 \), then \(\prod 0 (e - d \Lambda)^{-1} p = p \). If \(0 < x < \gamma_p \), then \(\prod 0 (e - d \Lambda)^{-1} p \) exists by virtue of Lemma 1.8. If \(0 \leq x < \gamma_p \), define \(\gamma_p(x) = \prod 0 (e - d \Lambda)^{-1} p \). By Lemma 1.2 we see that \(\gamma_p \) is Lipschitz continuous on \([0, \gamma_p] \) with Lipschitz constant \(\leq \| A p \|, \gamma_p(x) \in C \) for \(x \in [0, \gamma_p] \), and \(\| A \gamma_p(x) \| \leq \| A p \| \) for \(x \in [0, \gamma_p] \). For \(0 \leq x < \gamma_p \), we have that \(\text{dist}(p, \partial C) \leq \text{dist}(\gamma_p(x), \partial C) + \| p - \gamma_p(x) \| \leq \text{dist}(\gamma_p(x), \partial C) + x \| A p \| \). Hence,

\[
\text{dist}(p, \partial C)/\| A p \| \leq \text{dist}(\gamma_p(x), \partial C)/\| A p \| + x
\]

and so \(\gamma_p - x \leq \gamma_p(x) \). Thus, if \(0 \leq x < \gamma_p \) and \(0 \leq y < \gamma_p - x \), one sees that \(\gamma_p(x)(y) = \gamma_p(x + y) \). To show that \(\gamma_p' = A \gamma_p \), let \(0 \leq x < \gamma_p \) and let \(c > 0 \). By Lemma 1.2 there is a positive number \(z < \gamma_p - x \) such that if \(0 < y < z \) and \(\{s_i\}_{i=0}^m \) is a chain from 0 to \(y \), then

\[
\left\| A \prod_{i=1}^m L(s_i - s_{i-1}) \gamma_p(x) - A \gamma_p(x) \right\| < c/2.
\]

Let \(0 < y < z \). There is a chain \(\{t_i\}_{i=0}^m 0 \) from 0 to \(y \) such that

\[
\left| \prod_{i=1}^n L(t_i - t_{i-1}) \gamma_p(x) - \gamma_p(x)(y) \right| < c \cdot y/2.
\]

Then,

\[
\left\| \frac{1}{y} [\gamma_p(x + y) - \gamma_p(x)] - A \gamma_p(x) \right\| < c/2 + \frac{1}{y} \left| \left(\prod_{i=1}^n L(t_i - t_{i-1}) \gamma_p(x) - \gamma_p(x) \right) - y A \gamma_p(x) \right|
\]

\[
= \frac{1}{2} + \frac{1}{y} \sum_{i=1}^n (t_i - t_{i-1}) A \prod_{j=1}^i L(t_j - t_{j-1}) \gamma_p(x) - y A \gamma_p(x) \right|
\]

\[
\leq \frac{c}{2} + \frac{1}{y} \sum_{i=1}^n (t_i - t_{i-1}) \left| A \prod_{j=1}^i L(t_j - t_{j-1}) \gamma_p(x) - A \gamma_p(x) \right| < c
\]
and so \(g_p'(x) = Ag_p(x) \). Thus, \(g_p^{\prime +} = Ag_p \) on \([0, \gamma_p)\) and so \(g_p \) has a continuous right derivative on \([0, \gamma_p)\). Then \(g_p \) has a continuous derivative on \([0, \gamma_p)\) and so the theorem is proved.

Corollary. Let \(A \) be a mapping from the Banach space \(S \) to \(S \) such that the following are true:

(I') \(A \) is dissipative on \(S \), i.e., if \(u, v \in D_A \) and \(\epsilon \geq 0 \) then \(\| (e - \epsilon A)u - (e - \epsilon A)v \| \geq \| u - v \| \)

(II') \(R(e^{-\epsilon A}) = S \) for each \(\epsilon \geq 0 \)

(III') \(A \) is continuous on \(S \).

If \(p \in S \) then there is a continuously differentiable function \(g_p \) from \([0, \infty)\) to \(S \) such that \(g_p(0) = p \) and if \(x \geq 0 \) \(g_p'(x) = Ag_p(x) \) and \(g_p(x) = \int_0^x (e - dIA)^{-1}p \).

Proof. The proof follows immediately from the theorem if one observes that \(a = +\infty \) and \(\text{dist} (p, \partial S) = +\infty \).

It may be noted that a result of J. Dorroh [8] can be used to show that the solutions of \(g_p' = Ag_p \), \(g_p(0) = p \) in the corollary are unique. In [15] G. Minty has shown that if \(S \) is the Hilbert space then (I') and (III') imply (II'). More generally, it has been shown recently by T. Kato in [11] that (I') and (III') imply (II') in the case that \(S^* \) is uniformly convex. If \(S \) is a general Banach space F. Browder has shown in [4] that (I') and (III') imply (II') in the case that \(A \) is locally uniformly continuous.

By virtue of the corollary one may define for each \(x \geq 0 \) the transformation \(T(x) \) from \(S \) to \(S \) as follows: \(T(x)p = g_p(x) \) for each \(p \in S \). Then \(T \) is a strongly continuous semigroup of nonlinear nonexpansive transformations on \(S \), i.e.,

(i) \(T(x+y) = T(x)T(y) \) for \(x, y \geq 0 \),
(ii) \(T(0) = e \),
(iii) \(\| T(x)p - T(x)q \| \leq \| p - q \| \) for \(x \geq 0 \) and \(p, q \in S \) and
(iv) \(g_p(x) = T(x)p \) is continuous for \(p \) fixed and \(x \geq 0 \).

Further, \(A \) is the infinitesimal generator of \(T \), i.e., \(Ap = g_p'(0) \) for each \(p \in S \). In [2], [14], [17], [18], and [19] representations are given for nonlinear nonexpansive semigroups of transformations in terms of their infinitesimal generators using product integrals.

3. **Examples.** In conclusion we give some examples. In [6] a well-known example is given by J. Dieudonné of a continuous mapping \(A \) from a Banach space \(S \) to \(S \) for which there is no solution to the equation \(g' = Ag \) and \(g(0) = 0 \). This example is given in a Banach space which is not reflexive. Recently, J. Yorke [20] has given an example of a continuous mapping \(A \) from a Hilbert space to itself for which no solution exists to \(g' = Ag \), \(g(0) = 0 \).

In the examples below the mapping \(A \) satisfies conditions (I'), (II'), and (III') of the corollary.

Example 1. Let \(S = E_1 \) and let \(A \) be a continuous nonincreasing function from \(E_1 \) to \(E_1 \).
Example 2. Let $S = C_{[0,1]}$, i.e., S is the Banach space of continuous real-valued functions on $[0, 1]$ with supremum norm. Let F be a continuous increasing function from E_1 onto E_1 such that F' is continuous and nonincreasing on E_1. Define the mapping A on $C_{[0,1]}$ as follows:

$$ Af = F'[F^{-1}[f]] \quad \text{for each } f \in C_{[0,1]}.$$

The solutions g_f of the corollary are then given by $g_f(x) = F[x + F^{-1}[f]]$ for $x \geq 0$.

In both Examples 1 and 2 A may be neither linear nor Lipschitz continuous. In both, however, A is locally uniformly continuous. In Example 3 the mapping A is not locally uniformly continuous.

Example 3. Let $S = (c_0)$, i.e., S is the Banach space of real-number sequences $x = (x_n)$ converging to 0 with $\|x\| = \sup_n |x_n|$. If each of (a, b) and (c, d) is a point in the plane define the function $F_{[(a, b), (c, d)]}$ from $[a, c]$ to $[b, d]$ by

$$ F_{[(a, b), (c, d)]}(x) = b + \left(\frac{d-b}{c-a}\right)(x-a) \quad \text{for } x \in [a, c].$$

For each positive integer n define the function A_n from E_1 to E_1 as follows:

$$ A_n(x) = \begin{cases} 1 & \text{if } x < -1 \\ 0 & \text{if } x \geq 0 \end{cases} $$

$$ = F_{([-1/k, 1/k], (-1/k+1/n)(1/k-1/(k+1), 1/(k+1))]}(x) \quad \text{if } x \in \left[\frac{-1}{k+1}, \frac{1}{k+1}\right]$$

$$ = \frac{1}{k+1} \quad \text{if } x \in \left[\frac{-1}{k+1}, \frac{1}{k+1}\right].$$

Define the mapping A from (c_0) to (c_0) by $Ax = (A_n(x_n))$ for each $x = (x_n) \in (c_0)$. One sees that A satisfies conditions (I'), (II'), and (III'), since for each positive integer n A_n is nonincreasing and continuous. Moreover, there is no neighborhood about 0 on which A is uniformly continuous.

References

Vanderbilt University,
Nashville, Tennessee