Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A density theorem with an application to gap power series


Author: K. G. Binmore
Journal: Trans. Amer. Math. Soc. 148 (1970), 367-384
MSC: Primary 30.20
DOI: https://doi.org/10.1090/S0002-9947-1970-0255776-9
MathSciNet review: 0255776
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let N be a set of positive integers and let

$\displaystyle F(z) = \sum {{A_n}{z^n}} $

be an entire function for which $ {A_n} = 0(n \notin N)$. It is reasonable to expect that, if D denotes the density of the set N in some sense, then $ F(z)$ will behave somewhat similarly in every angle of opening greater than $ 2\pi D$. For functions of finite order, the appropriate density seems to be the Pólya maximum density $ \mathcal{P}$. In this paper we introduce a new density $ \mathcal{D}$ which is perhaps the appropriate density for the consideration of functions of unrestricted growth. It is shown that, if $ \vert I\vert > 2\pi \mathcal{D}$, then

$\displaystyle \log M(r) \sim \log M(r,I)$

outside a small exceptional set. Here $ M(r)$ denotes the maximum modulus of $ F(z)$ on the circle $ \vert z\vert = r$ and $ M(r,I)$ that of $ F(r{e^{i\theta }})$ for values of $ \theta $ in the closed interval I. The method used is closely connected with the question of approximating to functions on an interval by means of linear combinations of the exponentials $ {e^{ixn}}(n \in N)$.

References [Enhancements On Off] (What's this?)

  • [1] J. M. Anderson and K. G. Binmore, Coefficient estimates for lacunary power series and Dirichlet series. II, Proc. London Math. Soc. (3) 18 (1968), 49-68. MR 36 #6624. MR 0223576 (36:6624)
  • [2] A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79-93, MR 35 #654. MR 0209758 (35:654)
  • [3] K. G. Binmore A trigonometric inequality, J. London Math. Soc. 41 (1966), 693-696. MR 34 #559. MR 0200671 (34:559)
  • [4] A. E. Ingham, A further note on trigonometrical inequalities, Proc. Cambridge Philos. Soc. 46 (1950), 535-537. MR 12, 255; MR 12, 1002. MR 0037392 (12:255b)
  • [5] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), 367-379. MR 1545625
  • [6] -, A note on Fourier transforms, J. London Math. Soc. 9 (1934), 29-32.
  • [7] J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier Grenoble 7 (1957), 293-314. MR 21 #1489. MR 0102702 (21:1489)
  • [8] -, ``Travaux de Beurling et Malliavin,'' in Séminaire Bourbaki, 1961/1962, Exposé 225, Benjamin, New York, 1966, MR 33 #5420i.
  • [9] T. Kövari, On theorems of G. Pólya and P. Turán, J. Analyse Math. 6 (1958), 323-332. MR 21 #723. MR 0101917 (21:723)
  • [10] -, On the Borel exceptional values of lacunary integral functions, J. Analyse Math. 9 (1961/62), 71-109. MR 25 #3174. MR 0139743 (25:3174)
  • [11] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., vol. 26, Amer. Math. Soc., Providence, R. I., 1940. MR 2, 180. MR 0003208 (2:180d)
  • [12] G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Z. 29 (1929), 449-640.
  • [13] R. Redheffer, Elementary remarks on completeness, Duke Math. J. 35 (1968), 103-116. MR 37 #687. MR 0225090 (37:687)
  • [14] L. Schwartz, Approximation d'une fonction quelconque par des sommes d'exponentielles imaginaires, Ann. Fac. Sci. Univ. Toulouse (4) 6 (1943), 111-176. MR 7, 437. MR 0015553 (7:437d)
  • [15] P. Turan, Eine neue Methode in der Analysis und deren Anwendungen, Akadémiai Kiadó, Budapest, 1953. MR 15, 688. MR 0060548 (15:688b)
  • [16] G. Valiron, Lectures on the general theory of integral function, Toulouse, 1923.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.20

Retrieve articles in all journals with MSC: 30.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0255776-9
Keywords: Gap power series, entire functions, closure, completeness and freedom, $ {\mathcal{L}^p}$ spaces, Beurling-Malliavin density, Pólya maximum density, Fourier transforms
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society