Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some remarks on self-dual locally compact Abelian groups


Author: Lawrence Corwin
Journal: Trans. Amer. Math. Soc. 148 (1970), 613-622
MSC: Primary 22.20
DOI: https://doi.org/10.1090/S0002-9947-1970-0269775-4
MathSciNet review: 0269775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main results of this paper are the construction of some new self-dual locally compact Abelian groups and the proof of a structure theorem for a certain class of such groups. The construction is based on an investigation of when the extension of a compact Abelian group by its dual yields a self-dual group. It turns out that such extensions can be described algebraically ; the structure theorem follows from an analysis of the algebraic description.


References [Enhancements On Off] (What's this?)

  • [1] L. Calabi, Sur les extensions des groupes topologiques, Ann. Mat. Pura. Appl. (4) 32 (1951), 295-370. MR 14, 245. MR 0049907 (14:245d)
  • [2] M. Hall, The theory of groups, Macmillan, New York, 1959. MR 21 #1996. MR 0103215 (21:1996)
  • [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Bd. 115, Academic Press, New York and Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [4] I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1954. MR 16, 444. MR 0065561 (16:444g)
  • [5] A. Kleppner, Multipliers on abelian groups, Math. Ann 158 (1965), 11-34. MR 30 #4856. MR 0174656 (30:4856)
  • [6] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [7] A. Weil, Basic number theory, Springer-Verlag, New York, 1967. MR 38 3244. MR 0234930 (38:3244)
  • [8] M. Rajagopalan and T. Soundarajan, Structure of self-dual torsion-free metric LCA groups, Fund. Math. 65 (1969), 309-316. MR 0247375 (40:643)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.20

Retrieve articles in all journals with MSC: 22.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0269775-4
Keywords: Locally compact Abelian group, self-dual, group extension, cohomology of groups
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society