Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Mesures associées aux fonctionnelles additives de Markov. I


Author: D. Revuz
Journal: Trans. Amer. Math. Soc. 148 (1970), 501-531
MSC: Primary 60.62
DOI: https://doi.org/10.1090/S0002-9947-1970-0279890-7
MathSciNet review: 0279890
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With each additive functional of Markov processes we associate a measure and characterize, under duality hypotheses, those which correspond to $ \sigma $-finite measures. This enables us to weaken the hypotheses of Meyer's theorem on representation of potentials of measures as potentials of additive functional. We characterize also the measures which are associated with continuous additive functionals. This leads us to show that for each finite continuous additive functional of the process there exists a finite continuous additive functional of the dual process such that the corresponding time-changed processes are in duality. Similar results are also stated for subprocesses which generalize results by Hunt and Blumenthal and Getoor.


References [Enhancements On Off] (What's this?)

  • [1] J. Azéma, M. Kaplan-Duflo and D. Revuz, Mesure invariante sur les classes récurrentes des processus de Markov, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 157-181. MR 36 #6005. MR 0222955 (36:6005)
  • [2] -, Propriétés relatives des processus de Markov récurrents, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 286-314. MR 0260015 (41:4644)
  • [3] -, Récurrence fine des processus de Markov, Ann. Inst. Henri Poincaré Sect. B. 2 (1965/66), 185-220. MR 33 #8029. MR 0199889 (33:8029)
  • [4] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, New York, 1968. MR 0264757 (41:9348)
  • [5] -, Additive functionals of Markov processes in duality, Trans. Amer. Math. Soc. 112 (1964), 131-163. MR 28 #3483. MR 0160269 (28:3483)
  • [6] -, Accessible terminal times, Proc. Fifth Berkeley Sympos. Math. Statist. and Prob. (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part II, Univ. of California Press, Berkeley, Calif., 1967, pp. 1-8. MR 35 #3748. MR 0212883 (35:3748)
  • [7] C. Doleans, Fonctionnelles additives parfaites, Séminaire de Calcul des Probabilités, vol. II, Springer, Berlin, 1968. MR 0238389 (38:6665)
  • [8] H. P. McKean and H. Tanaka, Additive functionals of the Brownian path, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/61), 479-506. MR 24 #A1147. MR 0131295 (24:A1147)
  • [9] G. A. Hunt, Markoff processes and potentials. I, II, III, Illinois J. Math. 1 (1957), 44-93; 316-369; ibid. 2 (1958), 151-213. MR 19, 951; MR 21 #5824. MR 0091349 (19:951g)
  • [10] P.-A. Meyer, Fonctionnelles multiplicatives et additives de Markov, Ann. Inst. Fourier (Grenoble) 12 (1962), 125-230. MR 25 #3570. MR 0140148 (25:3570)
  • [11] -, Processus de Markov, Lecture Notes in Math., no. 26, Springer-Verlag, Berlin, 1967. MR 36 #2219. MR 0219136 (36:2219)
  • [12] -, Intégrales stochastiques. I, II, III, IV, Séminaire de Probabilités (Univ. Strasbourg, 1966/67), vol. I, Springer, Berlin, 1967, pp. 72-162. MR 37 #7000. MR 0231445 (37:7000)
  • [13] -, Un lemme de théorie des martingales, Séminaire de calcul des probabilités, vol. III, Springer, Berlin, 1969.
  • [14] -, Un résultat de théorie du potentiel, Séminaire de calcul des probabilités, vol. III, Springer, Berlin, 1969.
  • [15] -, Probabilités et potentiels, Actualités Sci. Indust., no. 1318, Hermann, Paris, 1966. MR 34 #5118.
  • [16] M. Nagasawa and K. Sato, Some theorems on time change and killing of Markov processes, Kōdai Math. Sem. Rep. 15 (1963), 195-219. MR 29 #1669. MR 0164372 (29:1669)
  • [17] V. A. Volkonskiĭ, Random substitution of time changes in strong Markov processes, Teor. Verojatnost. i Primenen. 3 (1958), 332-350. (Russian) MR 20 #7344. MR 0100919 (20:7344)
  • [18] V. A. Volkonskiĭ, Additive functionals of Markov processes, Trudy Moskov. Mat. Obšč. (1960), 9 143-189; English transl., Selected Transl. Math. Stat. and Prob., vol. 5, Amer. Math. Soc., Providence, R. I., 1965. MR 25 #610. MR 0137154 (25:610)
  • [19] M. Weil, Propriétés de continuité fine des fonctions co-excessives, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 75-86. MR 0256466 (41:1122)
  • [20] A. D. Ventcel', Non-negative additive functionals of Markov processes, Dokl. Akad Nauk SSSR 137 (1961), 17-20=Soviet Math. Dokl. 2 (1961), 218-221. MR 22 #10018. MR 0119252 (22:10018)
  • [21] D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.62

Retrieve articles in all journals with MSC: 60.62


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0279890-7
Keywords: Dual processes, reference excessive measure, $ \sigma $-integrable functionals, accessible terminal times, natural potentials, regular potentials, random-time change, subprocesses
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society