INSEPARABLE GALOIS THEORY OF EXPONENT ONE

BY

SHUEN YUAN

Abstract. An exponent one inseparable Galois theory for commutative ring extensions of prime characteristic \(p \neq 0 \) is given in this paper.

Let \(C \) be a commutative ring of prime characteristic \(p \neq 0 \). Let \(\mathfrak{g} \) be both a \(C \)-module and a restricted Lie ring of derivations on \(C \) and denote by \(A \) the kernel of \(\mathfrak{g} \), i.e., the set of all \(x \) in \(C \) such that \(\partial x = 0 \) for all \(\partial \) in \(\mathfrak{g} \). We say \(C \) over \(A \) is a purely inseparable Galois extension of exponent one if and only if \(C \) is finitely generated projective as \(A \)-module and \(C[\mathfrak{g}] = \text{Hom}_A(C, C) \). In this paper, we present a Galois correspondence between the restricted Lie subrings of \(\mathfrak{g} \) which are also \(C \)-module direct summands of \(\mathfrak{g} \) and the intermediate rings between \(C \) and \(A \) over which locally \(C \) admits \(p \)-basis. The Galois hypothesis \(C[\mathfrak{g}] = \text{Hom}_A(C, C) \) used here is an analog of the separable Galois hypothesis used in [7] and [8]. In case \(C \) is a field, our theory reduces to Jacobson's Galois theory for purely inseparable field extensions of exponent one.

In a subsequent paper [6], we shall present the attendant Galois cohomology results. Among other things, we shall show that there is an exact sequence \(0 \to L(C/A) \to P(A) \to P(C) \to \mathfrak{e}(\mathfrak{g}, C) \to B(C/A) \to 0 \), where \(B(C/A) \) is the Brauer group for \(C \) over \(A \), \(\mathfrak{e}(\mathfrak{g}, C) \) is Hochschild's group of regular restricted Lie algebra extensions of \(C \) by \(\mathfrak{g} \), \(P \) is the functor of taking rank one projective class group and \(L(C/A) \) is the logarithmic derivative group. We also show that the Amitsur cohomology groups \(H^{n+2}(C/A, G_m) \), \(n \geq 0 \), are isomorphic to Hochschild's groups \(\mathfrak{e}(C^n \otimes_A \mathfrak{g}, C^{n+1}) \) of regular restricted Lie algebra extensions of \(C^{n+1} \), the \(n+1 \)-fold tensor product \(C \otimes_A \cdots \otimes_A C \), by \(C^n \otimes_A \mathfrak{g} \).

All rings in the following are assumed to be commutative with 1. If \(A \) is a subring of a ring \(C \) we understand that both \(A \) and \(C \) have the same identity. By an \(A \)-algebra \(C \) we mean that \(A \) is a subring of \(C \). Finally all ring-homomorphisms and modules are unitary.

1. Lemma. Let \(C \) be a ring of prime characteristic \(p \neq 0 \), and let \(A \) be a subring of \(C \) such that \(t^n \in A \) for all \(t \) in \(C \). Then \(\text{Spec} \, C \) is canonically homeomorphic to \(\text{Spec} \, A \).

Received by the editors July 8, 1968 and, in revised form, October 2, 1969.

AMS Subject Classifications. Primary 1370.

Key Words and Phrases. Restricted Lie ring, derivation, \(p \)-basis.

Copyright © 1970, American Mathematical Society

163
Proof. We have two ring homomorphisms between A and C.

$$A \rightarrow C; \quad C \rightarrow A,$$

$$x \rightarrow x; \quad x \rightarrow x^p$$

which produce continuous mappings inverses to each other between Spec A and Spec C.

2. Remark. In view of the above lemma, we may regard the structural sheaf \mathcal{A} associated to Spec A as a subsheaf of the structural sheaf \mathcal{C} associated to Spec C. Moreover given any q in Spec A, we shall always denote by \mathcal{O} the corresponding element in Spec C and vice versa.

Another simple fact which we repeatedly use is the following

3. Lemma. Let C be a ring of prime characteristic $p \neq 0$ and let A be a subring of C such that $t^p \in A$ for all $t \in C$. If \mathcal{O} is any prime ideal in C then

$$M_{\mathcal{O}} = M \otimes_A A_q$$

for all C-modules M.

Proof. We have a map

$$C \otimes_A A_q \rightarrow C_{\mathcal{O}},$$

$$x \otimes (a/s) \rightarrow (ax)/s \quad (s \in A - q).$$

Given any x/t in $C_{\mathcal{O}}$ with $t \in C - \mathcal{O}$, then x/t is the image of $(xt^{p-1}) \otimes (1/t^p)$. So the map is onto. Now every element $\sum x_i \otimes (a_i/s_i)$ in $C \otimes_A A_q$ can be written in the form $x \otimes (1/s)$ with $x = \sum_i a_i x_i (\prod_j s_j)$ and $s = \prod_i s_i$. If $x \otimes (1/s)$ goes to zero in $C_{\mathcal{O}}$ then for some $t \in C - \mathcal{O}$, tx is zero in C. So $x \otimes (1/s) = (t^p x) \otimes (1/t^p s)$ is already zero in $C \otimes_A A_q$. This shows $C \otimes_A A_q$ may be identified with $C_{\mathcal{O}}$. If M is any C-module, we have

$$M_{\mathcal{O}} = M \otimes_C C_{\mathcal{O}} = M \otimes_C C \otimes_A A_q = M \otimes_A A_q.$$

This completes the proof of the lemma.

Let S be a sheaf of rings over a topological space X. By a derivation d on S we mean a sheaf map $d: S^+ \rightarrow S^+$ such that for any open set U in X, $d(U): S(U) \rightarrow S(U)$ is a derivation where S^+ is the underlining sheaf of abelian groups of S. If R is a subsheaf of S, then the set $\mathcal{L}(U, S/R)$ of all R-derivations on the sheaf S_U has an obvious $S(U)$-module structure. We shall call the sheaf $\mathcal{L}_{S/R} = \mathcal{L}(\ , S/R)$ the S-module of all R-derivations on S.

Given a derivation ∂ on a ring C, then for any multiplicatively closed subset Σ of C there is a unique derivation, which we again denote by ∂, on C_{Σ} making the diagram

$$\begin{array}{ccc}
C & \longrightarrow & C_{\Sigma} \\
\partial \downarrow & & \partial \downarrow \\
C & \longrightarrow & C_{\Sigma}
\end{array}$$
commutative. Thus a derivation d on C is completely determined by $d(\text{Spec } C): C \to C$. So we have the following

4. **Lemma.** Let C be a ring of prime characteristic $p \neq 0$. Let A be a subring of C such that $t^p \in A$ for all $t \in C$. Then the correspondence $d \mapsto d(\text{Spec } C)$ is an isomorphism between the C-module $\mathcal{L}(\text{Spec } C, \mathcal{O}/\mathcal{A})$ and the C-module $\mathfrak{g}(C/A)$ of all A-derivations on C.

5. **Lemma.** Let C be a ring of prime characteristic $p \neq 0$. Let A be a subring of C such that C admits a p-basis over A. Denote by $\mathfrak{g}(C/A)$ the C-module of all A-derivations on C. Then the sheaf $\mathcal{L}_{\mathcal{O}/\mathcal{A}}$ is isomorphic to $(\mathfrak{g}(C/A))$.

Proof. Given any distinguished open set $D(f)$ in $\text{Spec } C (f \in A)$, we have

$$\mathcal{L}(D(f), \mathcal{O}/\mathcal{A}) \cong \mathcal{L}(\text{Spec } C_f, \mathcal{O}/\mathcal{A}_f) \cong \mathfrak{g}(C_f/A_f) \cong \mathfrak{g}(C/A).$$

The last isomorphism follows from the fact that C has a p-basis over A. This completes the proof of the lemma.

6. **Definition.** Let A be a ring of prime characteristic $p \neq 0$. An A-algebra C is called a Galois extension of A provided

(i) C is finitely generated projective as A-module,

(ii) $t^p \in A$ for all $t \in C$,

(iii) Given any prime ideal \mathfrak{p} in C, then $C_{\mathfrak{p}}$ admits a p-basis over $A_{\mathfrak{p}}$.

The equivalence of this definition with the one given in the introduction is a consequence of Theorems 9 and 10 below.

7. **Lemma.** Given a Galois extension C over A, then for any prime ideal \mathfrak{q} in A, there is some $f \in A - \mathfrak{q}$ such that C_f admits a p-basis over A_f.

Proof. Since C is a finitely generated projective A-module, there is an $\alpha \in A - \mathfrak{q}$ such that C_α is a free A_α-module of finite dimension. Let t_1, \ldots, t_m be elements in C_α such that their images in $C_{\alpha} = C \otimes A_\alpha$ form a p-basis over A_α. If $\{\gamma_1\}$ is an A_α-module basis for C_α, then there is an m^p by m^p matrix μ with entries from A_α which takes $\{\gamma_1\}$ to $\{t_1^{e_1} \cdots t_m^{e_m} | 0 \leq e_i < p\}$ because $t_1^{e_1} \cdots t_m^{e_m}$ can be expressed as a linear combination in the γ_i's with coefficients from A_α. Write (determinant μ) $= \beta/\alpha^e$ where e is a nonnegative integer and β is from A. Put $f = \alpha \beta$. It is clear that $f \in A - \mathfrak{q}$ and the images of t_1, \ldots, t_m in C_f form a p-basis over A_f.

As an immediate consequence of Lemma 7 and [2, p. 90, Theorem 1.4.1] we get

8. **Lemma.** Let C be a Galois extension over A. Then the \mathcal{O}/\mathcal{A}-module $\mathcal{L}_{\mathcal{O}/\mathcal{A}}$ of all \mathcal{A}-derivations on C is isomorphic to $(\mathfrak{g}(C/A))$.\(^{(1)}\)

\(^{(1)}\) By a p-basis of C over A we mean a subset $\{t_1, \ldots, t_e\}$ in C such that $\{t_1^{e_1} \cdots t_e^{e_e} | 0 \leq e_i < p\}$ form an A-module basis for C.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
9. **Theorem.** Let C be a Galois extension over A, and denote by $g = g(C/A)$ the C-module of all A-derivations on C. Then

1. the C-module g is finitely generated and projective;
2. $A = \{ t \in C \mid \partial t = 0 \text{ for all } \partial \in g(C/A) \} = \text{kernel } g$;
3. $\text{Hom}_A (C, C) = C[g]$.

Proof. Only the last two statements are not already proven. That the inclusion map $A \hookrightarrow \text{kernel } g$ must be onto follows from the fact that at each prime q, the map $A_q \hookrightarrow \text{kernel } g_q = (\text{kernel } g)_q$ is onto [1, p. 111, Theorem 1]. By the same token the inclusion map $C[g] \hookrightarrow \text{Hom}_A (C, C)$ is onto because the corresponding map at each $q \in \text{Spec } A$ is onto.

10. **Theorem.** Let C be a ring of prime characteristic $p \neq 0$. Let g be a C-module of derivations on C. Put $A = \text{kernel } g$ and assume that C is finitely generated projective as A-module. If $\text{Hom}_A (C, C) = C[g]$ then C is a Galois extension over A. If in addition g is a restricted Lie ring, then $g = g(C/A)$.

Proof. Let q be any prime ideal in A. We have, by [1, p. 98, Proposition 19], $\text{Hom}_A (C_C, C_C) = C_C[\mathfrak{g}_C]$. For simplicity of notations write $\bar{A} = A_q/\mathfrak{q}_A$, $\bar{C} = C_C/qC_C$, and denote by \bar{g} the image of $g \otimes A_q \bar{A}$ in $\text{Hom}_{A_q} (C_C, C_C) \otimes A_q \bar{A} = \text{Hom}_{A_q} (C, C)$.

So $\text{Hom}_{A_q} (\bar{C}, \bar{C}) = \bar{C}[\bar{g}]$. This means no nontrivial ideal in \bar{C} is stable under \bar{g}. Since \bar{C} is finite dimensional over \bar{A}, it follows from [5, Corollary 2.8] that \bar{C} admits a p-basis over \bar{A}. Hence \mathfrak{g}_C admits a p-basis over A_q [1, p. 107, Corollaire 1] and C is a Galois extension over A.

It remains to show the inclusion map $g \rightarrow g(C/A)$ is onto. In view of [1, p. 111, Theorem 1], it suffices to show that at each prime $\mathfrak{p} \subseteq \text{Spec } C$, the corresponding map $\mathfrak{g}_C \rightarrow g(C/A)_C$ is onto. Now \bar{g} is a free \bar{C}-module [5, Lemma 3.2]. Let $\bar{e}_1, \ldots, \bar{e}_r$ be a \bar{C}-module basis for \bar{g}. The fact that \bar{g} is a restricted Lie ring implies that the set $\{ \bar{e} \bar{t}^1 \cdots \bar{e} \bar{t}^r \mid 0 \leq e_i < p \}$ form a set of generators for the \bar{C}-module $\text{Hom}_{\bar{A}} (\bar{C}, \bar{C}) = \bar{C}[\bar{g}]$. But $g(\bar{C}/A)$ is also a free \bar{C}-module because \bar{C} admits a p-basis over \bar{A}. Let r' be the dimension of $g(\bar{C}/A)$ over \bar{C}. Then $[\bar{C} : A] = r'$. Now as vector spaces over \bar{A}, \bar{g} is a subspace of $g(\bar{C}/A)$, so $rp' = [\bar{g} : \bar{A}] \leq [g(\bar{C}/A) : \bar{A}] = r'p'$. Hence $r \leq r'$. On the other hand the \bar{A}-module $\text{Hom}_{\bar{A}} (\bar{C}, \bar{C})$ is of dimension $p^{2r'}$ but has a set of generators of cardinality $p^{r+r'} \leq p^{2r'}$. This shows $r = r'$ and therefore $\bar{g} = g(\bar{C}/A)$. So $\bar{e}_1, \ldots, \bar{e}_r$ form a \bar{C}-module basis for $g(\bar{C}/A)$. Let \mathfrak{e}_i be a pre-image of \bar{e}_i in \mathfrak{g}_C. Then $\mathfrak{e}_1, \ldots, \mathfrak{e}_r$ form a C_C-module basis for $g(C_C/A_C)$. This proves that $\mathfrak{g}_C = g(C_C/A_C)$ because $g_C \subseteq g(C_C/A_C) = \mathop{\sum}\nolimits C_C \mathfrak{e}_i \subseteq \mathfrak{g}_C$. Consequently $g_C = g(C_C/A_C) = g(C/A)$ because C is a Galois extension over A.

11. **Theorem.** Let $A \subset B \subset C$ be a tower of rings such that C is a Galois extension both over A and over B. Then

1. B is a Galois extension over A.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(2) Let \(\mathfrak{g} = \{ d \in g(C/A) \mid dB \subseteq B \} \). Then there is a \(B \)-module homomorphism \(g(B/A) \to \mathfrak{g} \) which followed by the restriction map \(\mathfrak{g} \to g(B/A) \) given by \(d \to d|_B \) is the identity map on \(g(B/A) \).

(3) Let \(G(B/A) \) be the image of \(g(B/A) \) in \(\mathfrak{g} \). Then
\[
C \cdot G(B/A) \oplus g(C/B) = g(C/A).
\]

Proof. Let \(\mathfrak{q} \) be a prime ideal in \(C \) and denote by \(q \) and \(\mathfrak{q} \) the corresponding prime ideals in \(A \) and \(B \) respectively. Since \(C \) is finitely generated projective both as \(A \)-module and as \(B \)-module, there is \(\alpha \in A - q \) such that \(C_{\alpha} \) is a free module of finite dimension both over \(A_{\alpha} \) and over \(B_{\alpha} \). The \(A_{\alpha} \)-module \(B_{\alpha} \) as a direct summand of \(C_{\alpha} \) is therefore finitely generated projective. So \(B \) is finitely generated projective as \(A \)-module. We would like to show that \(B_{\mathfrak{q}} \) admits a \(p \)-basis over \(A_{\mathfrak{q}} \). For simplicity of notations, write \(A = A_{\mathfrak{q}} / qA_{\mathfrak{q}} \), \(B = B_{\mathfrak{q}} / qB_{\mathfrak{q}} \) and \(\overline{C} = C_{\mathfrak{q}} / qC_{\mathfrak{q}} \). Let \(b_1, \ldots, b_r \) be a basis for the free \(\overline{B} \)-module \(\overline{C} \). Let \(\partial \) be an \(\overline{A} \)-derivation on \(\overline{C} \). For any \(x \in \overline{B} \), \(\partial x \) may be expressed in the form \((\partial_1 x)b_1 + \cdots + (\partial_r x)b_r \), with \(\partial_i x \in \overline{B} \). It is easily seen that the map \(x \to \partial_i x \) is an \(\overline{A} \)-derivation on \(\overline{B} \). By Theorem 9 we have \(C[\{g(C/A)\}] = \text{Hom}_{A}(C, C) \) and hence
\[
\overline{C}[\mathfrak{g}] = \text{Hom}_{A}(\overline{C}, \overline{C})
\]
where \(\mathfrak{g} = g(C/A)_{\mathfrak{q}} / qg(C/A)_{\mathfrak{q}} \). So no nontrivial ideal in \(\overline{C} \) is stable under \(\mathfrak{g} \). Let \(I \) be a nonzero proper ideal in \(\overline{B} \). Then there is an \(\overline{A} \)-derivation \(\partial \) on \(\overline{C} \) such that \(\partial(I\overline{C}) \) is not contained in \(I\overline{C} \). This means \(\partial I \) cannot be contained in \(I \) for some \(i \). But \(\overline{B} \) is a finite dimensional vector space over \(\overline{A} \) so by [5, Corollary 2.8], \(\overline{B} \) admits a \(p \)-basis over \(\overline{A} \). Hence \(B_{\mathfrak{q}} \) admits a \(p \)-basis over \(A_{\mathfrak{q}} \) [1, p. 107, **Corollaire**].

To show the identity map \(g(B/A) \to g(B/A) \) factors through the restriction map \(\mathfrak{g} \to g(B/A) \), it suffices to show at each prime ideal \(q \) in \(B \) the identity map \(g(B/A)_q \to g(B/A)_q \) factors through \(\mathfrak{g}_q \to g(B/A)_q \). Let \(t_1, \ldots, t_l \) be a \(p \)-basis for \(C_\mathfrak{q} \) over \(B_\mathfrak{q} \) and let \(t_{l+1}, \ldots, t_{l+\lambda} \) be a \(p \)-basis for \(B_\mathfrak{q} \) over \(A_\mathfrak{q} \). If we denote by \(d_i \) the \(A_\mathfrak{q} \)-derivation on \(C_\mathfrak{q} \) given by \(d_i t_i = \delta_{ij} \), then the \(B_\mathfrak{q} \)-module \(H^q \) of all \(A_\mathfrak{q} \)-derivations on \(C_\mathfrak{q} \) leaving \(B_\mathfrak{q} \) invariant is just
\[
\sum_{i=1}^l C_i d_i + \sum_{i=1}^\lambda B_i d_{l+i}.
\]
It is obvious that the identity map on \(g(B/A)_q = g(B_q/A_q) \) factors through the restriction map \(H^q \to g(B/A)_q \). So it suffices to show \(\mathfrak{g}_q = H^q \).

Given any open set \(U \) in \(\text{Spec} A \), let \(H(U) \) be the set of all \(\overline{A}_U \)-derivations on \(\overline{C}_U \) leaving \(\overline{B}_U \) invariant. The set \(H(U) \) has an obvious \(\overline{B}(U) \)-module structure. So the sheaf \(U \to H(U) \) is a \(\overline{B} \)-module and its fibre at a point \(q \) in \(\text{Spec} B \) is just \(H^q \). It is easily seen that if \(C \) admits a \(p \)-basis over \(B \) and \(B \) admits a \(p \)-basis over \(A \), then the sheaf \(H \) is just the sheaf \(\mathfrak{g} \) associated to \(\mathfrak{g} \). Hence by [2, p. 90, Theorem 1.4.1] \(H \) is always the sheaf \(\mathfrak{g} \) associated to \(\mathfrak{g} \) whenever \(C \) is a Galois extension both over \(A \) and over \(B \) because locally \(C \) admits a \(p \)-basis over \(B \) as does \(B \) over \(A \).
This shows the identity map on \(g(B/A) \) factors through the restriction map \(\mathfrak{h} \to g(B/A) \). In particular \(\mathfrak{h} = G(B/A) \oplus g(C/B) \). Hence \(g(C/A) = C \cdot G(B/A) + g(C/B) \) because \(C \cdot \mathfrak{h} = g(C/A) \). Assume \(\partial \in [C \cdot G(B/A)] \cap g(C/B) \). We claim that \(\partial = 0 \). It suffices to show the corresponding derivation \(\partial_q \) at \(q \in \text{Spec } A \) is zero. Now \(\partial_q \) as an element in \([C \cdot G(B/A)]_q\) can be written in the form \(\sum_{i=1}^r u_i \partial_{i+1} \) with \(u_i \in C_\mathfrak{h} \) where \(\partial_{i+1} \) is the image of \(d_{i+1} \) in \(\mathfrak{h} \). So \(u_j = (\sum_{i=1}^r u_i \partial_{i+1}) t_{i+1} = \partial_q t_{i+1} = 0 \) because \(\partial_q \in g(C_\mathfrak{h}/C) \) and \(t_{i+1} \in B_\mathfrak{h} \). This shows \(\partial_q = 0 \) as desired.

12. Remark. Given a tower of rings \(A \subset B \subset C \) such that both \(B \) and \(C \) are Galois extensions over \(A \), in general \(C \) need not be a Galois extension over \(B \) and not every \(A \)-derivation on \(B \) can be extended to a derivation on \(C \). As an example, let \(C = K[[x, y]] \) be the formal power series ring over a coefficient field \(K \) of characteristic \(p \neq 0 \). Put \(A = K[[x^p, y^p]] \) and \(B = K[[x^p, y^p, xy]]. \) The \(A \)-derivation \(\partial \) on \(B \) given by \(\partial(xy) = 1 \) cannot be extended to \(C \). So in view of the above theorem, \(C \) cannot be a Galois extension over \(B \). If \(d \) is the \(K \)-derivation on \(C \) given by \(dx = x \) and \(dy = y \), then \(B = \ker d \) and \(\text{Hom}_B (C, C) = C[d] \). This means that \(C \) is not a projective \(B \)-module.

12. Theorem. Let \(C \) be a Galois extension over \(A \). Let \(\mathfrak{h} \) be a restricted Lie subring of \(g(C/A) \) such that \(\mathfrak{h} \) is also a \(C \)-module direct summand of \(g(C/A) \). Put \(B = \ker \mathfrak{h} \). Then \(C \) is a Galois extension over \(B \) and \(g(C/B) = \mathfrak{h} \).

Proof. We shall first prove the theorem under the additional assumption that \(C \) is a local ring\(^2\). So \(C \) admits a \(p \)-basis \(t_1, \ldots, t_s \) over \(A \). Let \(d_i \) be the \(A \)-derivation on \(C \) given by \(d_i t_j = \delta_{ij} \). Then \(d_1, \ldots, d_r \) form a \(C \)-module basis for \(g(C/A) \). Now the \(C \)-module \(\mathfrak{h} \) as a direct summand of \(g(C/A) \) is also free. Let \(\partial_{1,0}, \ldots, \partial_{1,0} \) be a basis for \(\mathfrak{h} \). We have \(\delta_{i,0} = \sum_{j=1}^r (\partial_{i,0} t_j) \). Clearly given any \(i, \delta_{i,0} t_j \) must be an invertible element in \(C \) for at least one \(j \) \((1 \leq j \leq r)\). We claim that there exist \(\partial_1, \ldots, \partial_s \), a basis for \(\mathfrak{h} \) and elements \(y_1, \ldots, y_s \) in \(C \) such that \(\delta_{i,j} = \delta_{ij} \). Suppose we have already proven \(y_1, \ldots, y_s \) in \(C \) and a \(C \)-module basis \(\delta_{1,s}, \ldots, \delta_{1,s} \) for \(\mathfrak{h} \) such that \(\delta_{i,s} y_j = \delta_{ij} \) for \(1 \leq i \leq l \) and \(1 \leq j \leq s \). If \(s < l \), then there is an element \(y_{s+1} \) in \(C \) such that \(\delta_{s+1,s+1} y_{s+1} \) is invertible in \(C \). We set \(\delta_{s+1,s+1} = (\delta_{s+1,s} y_{s+1})^{-1} \delta_{s+1,s} \) so that \(\delta_{s+1,s+1} y_{s+1} = 1 \). For every \(j \neq s+1 \), we set \(\delta_{j,s+1} = \delta_{j,s} - (\delta_{j,s} y_{s+1}) \delta_{s+1,s+1} \).

Then we have \(\delta_{i,s+1} y_j = \delta_{ij} \) for \(1 \leq i \leq l \) and \(1 \leq j \leq s+1 \), and that \(\delta_{i,s+1} \) are still a basis for \(\mathfrak{h} \). Proceeding in this fashion, starting from the case \(s = 0 \), we finally obtain \(y_1, \ldots, y_s \) in \(C \) and \(\delta_i = \delta_{i,l} \) which satisfy the requirements of our assertion.

\(^2\) Hochschild's proof of the main theorem of Jacobson's Galois theory for purely inseparable field extensions of exponent one is used here practically without change; (c.f. [4, Lemma 2.1] and [5, Theorem 1]).
Writing \[\partial_s v_s \partial_s = \sum_{s=1}^{n} v_s \partial_s \] with \(v_s \in C \), we get \(v_s = [\partial_s, \partial_s] y_s = 0 \) whence \([\partial_s, \partial_s] = 0\). In the same way we find that \(\partial_s^p = 0 \). It is clear that \(y_1, \ldots, y_l \) form a \(p \)-basis for \(B[y_1, \ldots, y_l] \). It remains to prove that \(C = B[y_1, \ldots, y_l] \). Suppose that this is false, i.e., that there is an element \(u_1 \in C \) which does not belong to \(B[y_1, \ldots, y_l] \). Assume inductively that we have already found an element \(u_s \in C \) which is not in \(B[y_1, \ldots, y_s] \) and which is annihilated by every \(\partial_i \) with \(i < s \). Since \(\partial_s^p = 0 \) there is an exponent \(e (0 \leq e < p) \) such that \(\partial_s^{e+1} \) but not \(\partial_s^e \) maps \(u_s \) into \(B[y_1, \ldots, y_l] \). We have \(\partial_i \partial_s^e(u_s) = \partial_s^e \partial_i(u_s) \) which is zero for \(i < s \). Hence replacing \(u_s \) by \(\partial_s(u_s) \), we may suppose that \(\partial_s(u_s) \in B[y_1, \ldots, y_l] \). Since \(\partial_s(u_s) \) is annihilated by each \(\partial_i \) with \(i < s \) it follows then that \(\partial_s(u_s) \in B[y_n, \ldots, y_l] \). Write \(\partial_s u_s \) as a polynomial of degree \(p - 1 \) in \(y_s \) with coefficients in \(B[y_{s+1}, \ldots, y_l] \). Since this polynomial is annihilated by \(\partial_s^{p-1} \) (for \(\partial_s^p = 0 \)) the coefficient of \(y_s^{p-1} \) must be 0. Hence we can integrate this polynomial with respect to \(y_s \), i.e., there is an element \(u \in B[y_1, \ldots, y_l] \) such that \(\partial_s(u) = \partial_s u \). Now put \(u_{s+1} = u_s - u \). Then \(u_{s+1} \notin B[y_1, \ldots, y_l] \) and \(\partial_s(u_{s+1}) = 0 \) for all \(i < s + 1 \). We can repeat this construction until we obtain \(u_{i+1} \notin B[y_1, \ldots, y_l] \) such that \(\partial_s(u_{i+1}) = 0 \) for all \(i = 1, \ldots, I \). But then \(u_{i+1} \in B \), and we have a contradiction. Hence \(C = B[y_1, \ldots, y_l] \). Moreover, if \(\partial \) is any \(B \)-derivation on \(C \) we have \(\partial = \sum (\partial y_i) \partial_i \in \mathfrak{h} \). This proves the theorem when \(C \) is local.

To complete the proof of the theorem, it remains to show that \(C \) is finitely generated projective as \(B \)-module and that \(g(C/B) = \mathfrak{h} \). Since \(C \) is finitely generated as \(A \)-module so surely finitely generated over \(B \) also. At each prime \(\mathfrak{p} \) in \(C \), \(C_{\mathfrak{p}} \) admits a \(p \)-basis over \(B_q \) with \(q = \mathfrak{p} \cap B \). Moreover, the dimension \([C_{\mathfrak{p}} : B_q]\) is equal to the \([h_{C_{\mathfrak{p}} : C_{\mathfrak{p}}} : h_{B_q : B_q}]\)th power of \(p \). So \([C_{\mathfrak{p}} : B_q]\) is locally constant in \(\text{Spec} \ C \) because \([B_q : C_{\mathfrak{p}}]\) is. Hence \(C \) over \(B \) is finitely generated projective and therefore must be a Galois extension. Finally \(h_{C_{\mathfrak{p}}} \) is equal to \(g(C/B)_{\mathfrak{p}} \) at every \(\mathfrak{p} \in \text{Spec} \ C \). So the inclusion map \(\mathfrak{h} \rightarrow g(C/B) \) must be onto.

Summarizing the above results, we get

13. THEOREM. Let \(C \) be a Galois extension over \(A \) and denote by \(g_{C/A} \) the \(C \)-module of all \(A \)-derivations on \(C \). Put

\[\Theta = \{B|B \text{ is an } A\text{-subalgebra of } C \text{ and } C/B \text{ is a Galois extension}\}, \]

\[\Xi = \{g|g \text{ is a restricted Lie subring and a } C\text{-module direct summand of } g_{C/A}\}. \]

Then the mappings \(\Xi \rightarrow \Theta \rightarrow \Xi \) given respectively by \(g \rightarrow \text{kernel } g; B \rightarrow g_{C/B} \) are inverses to each other.

REFERENCES

STATE UNIVERSITY OF NEW YORK AT BUFFALO,
AMHERST, NEW YORK 14226