Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inseparable Galois theory of exponent one


Author: Shuen Yuan
Journal: Trans. Amer. Math. Soc. 149 (1970), 163-170
MSC: Primary 13.70
DOI: https://doi.org/10.1090/S0002-9947-1970-0257063-1
MathSciNet review: 0257063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An exponent one inseparable Galois theory for commutative ring extensions of prime characteristic $ p \ne 0$ is given in this paper.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Algèbre commutative, Chapitres 1, 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
  • [2] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. I : Le langage des schémas, Inst. Hautes Etudes Sci. Publ. Math. No. 4 (1960). MR 36 #177a.
  • [3] G. Hochschild, Double vector spaces over division rings, Amer. J. Math. 71 (1949), 443-460. MR 10, 676. MR 0029889 (10:676a)
  • [4] G. Hochschild, Simple algebras with purely inseparable splitting fields of exponent 1, Trans. Amer. Math. Soc. 79 (1955), 477-489. MR 17, 61. MR 0070961 (17:61d)
  • [5] S. Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964), 623-630. MR 29 #4772. MR 0167499 (29:4772)
  • [6] -, Inseparable exponent one Galois cohomolgy (to appear).
  • [7] S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15-33. MR 33 #4118. MR 0195922 (33:4118)
  • [8] O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83-98. MR 0244238 (39:5555)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13.70

Retrieve articles in all journals with MSC: 13.70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0257063-1
Keywords: Restricted Lie ring, derivation, p-basis
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society