Balanced rings and a problem of Thrall

Author:
Victor P. Camillo

Journal:
Trans. Amer. Math. Soc. **149** (1970), 143-153

MSC:
Primary 16.50

MathSciNet review:
0260794

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Balanced ring is defined and related to Thrall's QF-1 rings. Several theorems are obtained which show that balanced rings enjoy strong homological and chain conditions. The structure of commutative balanced rings is determined. Also, the structure of commutative artinian QF-1 rings is gotten. This is a generalization of a theorem of Floyd.

**[1]**Hyman Bass,*Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc.**95**(1960), 466–488. MR**0157984**, 10.1090/S0002-9947-1960-0157984-8**[2]**K. Feĭs,*Algebra: koltsa, moduli i kategorii. II*, “Mir”, Moscow, 1979 (Russian). Translated from the English by L. A. Koĭfman, A. V. Mikhalev, T. S. Tol′skaya, G. M. Tsukerman and M. P. Dorofeeva; Edited by L. A. Skornjakov. MR**551052****[3]**Carl Faith,*A general Wedderburn theorem*, Bull. Amer. Math. Soc.**73**(1967), 65–67. MR**0202763**, 10.1090/S0002-9904-1967-11642-2**[4]**Carl Faith,*Lectures on injective modules and quotient rings*, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR**0227206****[5]**Denis Ragan Floyd,*On 𝑄𝐹-1 algebras*, Pacific J. Math.**27**(1968), 81–94. MR**0234988****[6]**Kent R. Fuller,*Double centralizers of injectives and projectives over artinian rings.*, Illinois J. Math.**14**(1970), 658–664. MR**0268217****[7]**Kent R. Fuller,*Generalized uniserial rings and their Kupisch series*, Math. Z.**106**(1968), 248–260. MR**0232795****[8]**Joachim Lambek,*Lectures on rings and modules*, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR**0206032****[9]**Kiiti Morita,*On algebras for which every faithful representation is its own second commutator*, Math. Z.**69**(1958), 429–434. MR**0126492****[10]**Kiiti Morita,*Duality for modules and its applications to the theory of rings with minimum condition*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A**6**(1958), 83–142. MR**0096700****[11]**A. Ornstein, Ph.D. Thesis, Rutgers University, New Brunswick, N.J., 1966.**[12]**B. L. Osofsky,*A generalization of quasi-Frobenius rings*, J. Algebra**4**(1966), 373–387. MR**0204463****[13]**R. M. Thrall,*Some generalization of quasi-Frobenius algebras*, Trans. Amer. Math. Soc.**64**(1948), 173–183. MR**0026048**, 10.1090/S0002-9947-1948-0026048-0**[14]**Yuzo Utumi,*Self-injective rings*, J. Algebra**6**(1967), 56–64. MR**0209321****[15]**J. P. Jans,*Note on 𝑄𝐹-1 algebras*, Proc. Amer. Math. Soc.**20**(1969), 225–228. MR**0233848**, 10.1090/S0002-9939-1969-0233848-X**[16]**S. E. Dickson and K. R. Fuller,*Commutative artinian*QF-1*rings are*QF, (to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16.50

Retrieve articles in all journals with MSC: 16.50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1970-0260794-0

Keywords:
Ring,
quasi-Frobenius,
perfect ring,
BiEndomorphism,
double centralizer

Article copyright:
© Copyright 1970
American Mathematical Society