Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representations of certain compact semigroups by $ {\rm HL}$-semigroups


Authors: J. H. Carruth and C. E. Clark
Journal: Trans. Amer. Math. Soc. 149 (1970), 327-337
MSC: Primary 22.05
DOI: https://doi.org/10.1090/S0002-9947-1970-0263964-0
MathSciNet review: 0263964
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An HL-semigroup is defined to be a topological semigroup with the property that the Schützenberger group of each $ \mathcal{H}$-class is a Lie group. The following problem is considered: Does a compact semigroup admit enough homomorphisms into HL-semigroups to separate points of S; or equivalently, is S isomorphic to a strict projective limit of HL-semigroups? An affirmative answer is given in the case that S is an irreducible semigroup. If S is irreducible and separable, it is shown that S admits enough homomorphisms into finite dimensional HL-semigroups to separate points of S.


References [Enhancements On Off] (What's this?)

  • [1] L. W. Anderson and R. P. Hunter, The $ \mathcal{H}$-equivalence in compact semigroups, Bull. Soc. Math. Belg. 14 (1962), 274-296. MR 27 #1920. MR 0151939 (27:1920)
  • [2] -, The $ \mathcal{H}$-equivalence in compact semigroups. II, J. Austral. Math. Soc. 3 (1963), 288-293. MR 28 #5431. MR 0162232 (28:5431)
  • [3] -, Homomorphisms and dimension, Math. Ann. 147 (1962), 248-268. MR 26 #4324. MR 0146804 (26:4324)
  • [4] C. E. Clark, Certain types of congruences on compact commutative semigroups, Duke Math. J. (to appear). MR 0255717 (41:377)
  • [5] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. 1, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #A2627. MR 0132791 (24:A2627)
  • [6] H. Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209-224. MR 16, 609. MR 0066637 (16:609b)
  • [7] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Charles E. Merrill, Columbus, Ohio, 1966. MR 35 #285. MR 0209387 (35:285)
  • [8] R. P. Hunter, On the structure of homogroups with applications to the theory of compact connected semigroups, Fund. Math. 52 (1963), 69-102. MR 26 #1864. MR 0144318 (26:1864)
  • [9] R. P. Hunter and N. Rothman, Characters and cross sections for certain semigroups, Duke Math. J. 29 (1962), 347-366. MR 25 #5503. MR 0142110 (25:5503)
  • [10] W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 312. MR 0006493 (3:312b)
  • [11] L. S. Pontrjagin, Topological groups, 2nd ed., GITTL, Moscow, 1954; English transl., Gordon & Breach, New York, 1966. MR 17, 171 ; MR 34 #1439. MR 0201557 (34:1439)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.05

Retrieve articles in all journals with MSC: 22.05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0263964-0
Keywords: Compact semigroup, Lie group, Schützenberger group, H-class, representation, irreducible semigroup, projective limit
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society