Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Monotone approximation by algebraic polynomials


Authors: G. G. Lorentz and K. L. Zeller
Journal: Trans. Amer. Math. Soc. 149 (1970), 1-18
MSC: Primary 41.40
DOI: https://doi.org/10.1090/S0002-9947-1970-0285843-5
MathSciNet review: 0285843
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A given real continuous function f on [a, b] is approximated by polynomials $ {P_n}$ of degree n that are subject to certain restrictions. Let $ 1 \leqq {k_1} < \cdots < {k_p} \leqq n$ be given integers, $ {\varepsilon _i} = \pm 1$, given signs. It is assumed that $ P_n^{({k_i})}(x)$ has the sign of $ {\varepsilon _i},i = 1, \ldots ,p,a \leqq x \leqq b$. Theorems are obtained which describe the polynomials of best approximation, and (for $ p = 1$) establish their uniqueness. Relations to Birkhoff interpolation problems are of importance. Another tool are the sets A, where $ \vert f(x) - {P_n}(x)\vert$ attains its maximum, and the sets $ {B_i}$ with $ P_n^{({k_i})}(x) = 0$. Conditions are discussed which these sets must satisfy for a polynomial $ {P_n}$ of best approximation for f. Numbers of the points of sets A, $ {B_i}$ are studied, the possibility of certain extreme situations established. For example, if $ p = 1,{k_1} = 1,n = 2q + 1$, it is possible that $ \vert A\vert = 3,\vert B\vert = n$.


References [Enhancements On Off] (What's this?)

  • [1] K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235. MR 0264828 (41:9419)
  • [2] G. D. Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and integration, Trans. Amer. Math. Soc. 7 (1906), 107-136. MR 1500736
  • [3] G. G. Lorentz, Approximation of functions, Holt, New York, 1966. MR 35 #4642. MR 0213785 (35:4642)
  • [4,] 5. G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials. I, II, J. Approximation Theory 1 (1968), 501-504; 2 (1969), 265-269. MR 39 #699. MR 0239342 (39:699)
  • [6] -, Gleichmässige Approximation durch monotone Polynome, Math. Z. 109 (1969), 87-91. MR 0241852 (39:3189)
  • [7] -, Birkhoff interpolation, SIAM J. Numer. Anal. (to appear). MR 0295529 (45:4595)
  • [8] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  • [9] J. R. Rice, Approximation with convex constraints, J. SIAM 11 (1963), 15-32. MR 28 #2387. MR 0159170 (28:2387)
  • [10] J. A. Roulier, Monotone and weighted approximation, Dissertation, Syracuse University, Syracuse, N. Y., 1968. MR 38 #4875.
  • [11] -, Monotone approximation of certain classes of functions, J. Approximation Theory 1 (1968), 319-324. MR 0236580 (38:4875)
  • [12] I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543. MR 34 #3160. MR 0203307 (34:3160)
  • [13] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671. MR 32 #2802. MR 0185334 (32:2802)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41.40

Retrieve articles in all journals with MSC: 41.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0285843-5
Keywords: Monotone approximation, polynomials of best approximation, admissible sets, minimal polynomials, basic polynomials of Lagrange interpolation, Birkhoff interpolation, free incidence matrices, poised incidence matrices
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society