Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representations of twisted group algebras


Authors: Robert C. Busby and Harvey A. Smith
Journal: Trans. Amer. Math. Soc. 149 (1970), 503-537
MSC: Primary 46.80; Secondary 42.56
DOI: https://doi.org/10.1090/S0002-9947-1970-0264418-8
MathSciNet review: 0264418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a general class of Banach algebras which include as special cases the group algebra of a locally compact group, the group algebra of a group extension (in terms of the subgroup and quotient group), and some other examples, special cases of which have been studied under the name of covariance algebras. We develop the general representation theory and generalize Mackey's theory of induced representations.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 659. MR 0045941 (13:659f)
  • [2] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. No. 62 (1966). MR 34 #7723. MR 0207910 (34:7723)
  • [3] J. Dixmier, Les $ {C^ \ast }$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [4] -, Les algèbres d'opérateurs dans l'espace hilbertien, Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
  • [5] S. Doplicher, D. Kastler and D. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1-28. MR 34 #4930. MR 0205095 (34:4930)
  • [6] E. Effros and F. Hahn, Locally compact transformation groups and $ {C^ \ast }$-algebras, Bull. Amer. Math. Soc. 73 (1967), 222-226. MR 38 #1536. MR 0233213 (38:1536)
  • [7] J. Feldman and F. P. Greenleaf, Existence of Borel transversals in groups, Pacific J. Math. 25 (1968), 455-461. MR 37 #6395. MR 0230837 (37:6395)
  • [8] J. Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885-911. MR 26 #3819. MR 0146297 (26:3819)
  • [9] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [10] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 21, Amer. Math. Soc., Providence, R. I., 1957, MR 19, 664. MR 0089373 (19:664d)
  • [11] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. MR 28 #2450. MR 0159233 (28:2450)
  • [12] G. P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429. MR 21 #5910. MR 0107185 (21:5910)
  • [13] H. Leptin, Verallgemeinerte $ {L^1}$-algebren, Math. Ann. 159 (1965), 51-76.
  • [14] -, Verallgemeinerte $ {L^1}$-Algebren und projektive Darstellungen lokal kompakter Gruppen. I, Invent. Math. 3 (1967), 257-281. MR 37 #5328.
  • [15] -, Verallgemeinerte $ {L^1}$-Algebren und projektive Darstellungen lokal kompakter Gruppen. II, Invent. Math. 4 (1967), 68-86. MR 37 #5328. MR 0229754 (37:5328)
  • [16] G. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545. MR 11, 158. MR 0031489 (11:158b)
  • [17] -, Induced representations of locally compact groups. I, Ann. of Math. (2), 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [18] -, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789. MR 0098328 (20:4789)
  • [19] S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 14, Academic Press, New York and Springer-Verlag, Berlin and New York, 1963. MR 28 #122. MR 0156879 (28:122)
  • [20] I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221-265. MR 13, 534. MR 0045133 (13:534b)
  • [21] R. Schatten, A theory of cross spaces, Ann. of Math. Studies, No. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186. MR 0036935 (12:186e)
  • [22] M. Takesaki, Covariant representations of $ {C^ \ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273-303. MR 37 #774. MR 0225179 (37:774)
  • [23] T. Turumaru, Crossed product of operator algebra, Tôhoku Math. J. (2) 10 (1958), 355-365. MR 21 #1550. MR 0102764 (21:1550)
  • [24] A. Weil, L'intégration dans les groupes topologiques et ses applications, 2nd ed., Actualités Sci. Indust., no. 1145, Hermann, Paris, 1953.
  • [25] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 14, 246. MR 0049911 (14:246c)
  • [26] G. Zeller-Meier, Produits croisés d'une $ {C^ \ast }$-algèbre par un groupe d'automorphismes, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A20-A23. MR 33 #7877. MR 0199734 (33:7877)
  • [27] J. Dixmier, Dual et quasi-dual d'une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278-283. MR 25 #3384. MR 0139960 (25:3384)
  • [28] N. Bourbaki, Éléments de mathématiques, Livre VI: Intégration. Chapitre 7, Actualités Sci. Indust., no. 1306. Hermann, Paris, 1963. MR 31 #3539. MR 0179291 (31:3539)
  • [29] R. Blattner, Group extension representations and the structure space, Pacific J. Math. 15 (1965), 1101-1113. MR 32 #5785. MR 0188346 (32:5785)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.80, 42.56

Retrieve articles in all journals with MSC: 46.80, 42.56


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0264418-8
Keywords: Twisted group algebra, covariance algebra, covariance representation, induced representation, group extension
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society