Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Mersions of topological manifolds


Author: David Gauld
Journal: Trans. Amer. Math. Soc. 149 (1970), 539-560
MSC: Primary 57.01
DOI: https://doi.org/10.1090/S0002-9947-1970-0266217-X
MathSciNet review: 0266217
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We here generalise the immersion and submersion theorems of Smale, Hirsch, Haefliger and Poenaru, Phillips, Lees, and Lashof, giving a relative version in the case of mersions of topological manifolds. A mersion is a map of manifolds $ {M^m} \to {Q^q}$ which in the appropriate local coordinate systems has the form $ {R^m} \to {R^q}$ of the standard inclusion or projection of one euclidean space in another. Such a mersion induces a map of tangent bundles satisfying certain properties. In this paper the problem of classifying mersions is reduced to that of classifying such bundle maps.


References [Enhancements On Off] (What's this?)

  • [1] M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341. MR 24 #A3637. MR 0133812 (24:A3637)
  • [2] R. Edwards and R. Kirby, Deformations of spaces of imbeddings, (to appear). MR 0283802 (44:1032)
  • [3] A. Haefliger and V. Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. No. 23 (1964), 75-91. MR 30 #2515. MR 0172296 (30:2515)
  • [4] M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980. MR 0119214 (22:9980)
  • [5] R. Lashof, Lees' immersion theorem and the triangulation of manifolds, Bull. Amer. Math. Soc. 75 (1969), 535-538. MR 0239603 (39:960)
  • [6] J. A. Lees, Immersions and surgeries on topological manifolds, Bull. Amer. Math. Soc. 75 (1969), 529-534. MR 0239602 (39:959)
  • [7] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 36 #5942. MR 0222892 (36:5942)
  • [8] A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206. MR 34 #8420. MR 0208611 (34:8420)
  • [9] C. Rourke and B. Sanderson, On the homotopy theory of $ \Delta $-sets, Ann. of Math. (to appear).
  • [10] S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327-344. MR 21 #3862. MR 0105117 (21:3862)
  • [11] R. Kirby and L. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749. MR 0242166 (39:3500)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.01

Retrieve articles in all journals with MSC: 57.01


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0266217-X
Keywords: Classification of immersions, classification of submersions, tangent bundles, differential of an immersion, differential of a submersion, realisation of regular homotopy by isotopy
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society