Some fixed point theorems for compact maps and flows in Banach spaces.

Author:
W. A. Horn

Journal:
Trans. Amer. Math. Soc. **149** (1970), 391-404

MSC:
Primary 47.85

DOI:
https://doi.org/10.1090/S0002-9947-1970-0267432-1

MathSciNet review:
0267432

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be convex subsets of the Banach space *X*, with and closed and open in . If *f* is a compact mapping of into *X* such that and for some , then *f* has a fixed point in . (This extends a result of F. E. Browder published in 1959.) Also, if is a continuous flow on the Banach space *X*, are convex subsets of *X* with and compact and open in , and for some , where for all , then there exists such that for all . Minor extensions of Browder's work on ``nonejective'' and ``nonrepulsive'' fixed points are also given, with similar results for flows.

**[1]**F. E. Browder,*On a generalization of the Schauder fixed point theorem*, Duke Math. J.**26**(1959), 291-303. MR**21**#4368. MR**0105629 (21:4368)****[2]**-,*Another generalization of the Schauder fixed point theorm*, Duke Math. J.**32**(1965), 399-406. MR**0203718 (34:3567)****[3]**-,*A further generalization of the Schauder fixed point theorem*, Duke Math. J.**32**(1965), 575-578. MR**0203719 (34:3568)****[4]**J. Cronin,*Fixed points and topological degree in nonlinear analysis*, Math. Surveys, no. 11, Amer. Math. Soc., Providence, R. I., 1964. MR**29**#1400. MR**0164101 (29:1400)****[5]**J. Dugundji,*An extension of Tietze's theorem*, Pacific J. Math.**1**(1951), 353-367. MR**13**, 373. MR**0044116 (13:373c)****[6]**A. Granas,*The theory of compact vector fields and some of its applications to topology of functional spaces*. I, Rozprawy Mat.**30**(1962). MR**26**#6743. MR**0149253 (26:6743)****[7]**A. Halanaĭ,*Asymptotic stability and small perturbations of periodic systems of differential equations with retarded arguments*, Uspehi Mat. Nauk**17**(1962), no. 1 (103), 231-233. (Russian) MR**25**#301. MR**0136840 (25:301)****[8]**W. A. Horn,*A generalization of Browder's fixed point theorem*, Abstract #611-30, Notices Amer. Math. Soc.**11**(1964), 325.**[9]**G. S. Jones,*The existence of periodic solutions of*, J. Math. Anal. Appl.**5**(1962), 435-450. MR**25**#5234. MR**0141837 (25:5234)****[10]**-,*Asymptotic fixed point theorems and periodic systems of functional-differential equations*, Contributions to Differential Equations**2**(1963), 385-405. MR**28**#1361. MR**0158135 (28:1361)****[11]**-,*Periodic motions in Banach space and applications to functional-differential equations*, Contributions to Differential Equations**3**(1964), 75-106. MR**29**#342. MR**0163039 (29:342)****[12]**-,*Hereditary dependence in the theory of differential equations*. I, University of Maryland Tech. Note BN-385, 1965.**[13]**J. Schauder,*Der Fixpunktsatz in Funktionalräumen*, Studia Math.**2**(1930), 171-180.**[14]**A. Tychonoff,*Ein Fixpunktsatz*, Math. Ann.**111**(1935), 767-776. MR**1513031**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47.85

Retrieve articles in all journals with MSC: 47.85

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0267432-1

Keywords:
Banach space,
fixed points,
asymptotic fixed point theorems,
compact mappings,
flows,
nonejective fixed points,
nonrepulsive fixed points

Article copyright:
© Copyright 1970
American Mathematical Society