Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Some fixed point theorems for compact maps and flows in Banach spaces.


Author: W. A. Horn
Journal: Trans. Amer. Math. Soc. 149 (1970), 391-404
MSC: Primary 47.85
MathSciNet review: 0267432
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {S_0} \subset {S_1} \subset {S_2}$ be convex subsets of the Banach space X, with $ {S_0}$ and $ {S_2}$ closed and $ {S_1}$ open in $ {S_2}$. If f is a compact mapping of $ {S_2}$ into X such that $ \cup _{j = 1}^m{f^j}({S_1}) \subset {S_2}$ and $ {f^m}({S_1}) \cup {f^{m + 1}}({S_1}) \subset {S_0}$ for some $ m > 0$, then f has a fixed point in $ {S_0}$. (This extends a result of F. E. Browder published in 1959.) Also, if $ \{ {T_t}:t \in {R^ + }\} $ is a continuous flow on the Banach space X, $ {S_0} \subset {S_1} \subset {S_2}$ are convex subsets of X with $ {S_0}$ and $ {S_2}$ compact and $ {S_1}$ open in $ {S_2}$, and $ {T_{{t_0}}}({S_1}) \subset {S_0}$ for some $ {t_0} > 0$, where $ {T_t}({S_1}) \subset {S_2}$ for all $ t \leqq {t_0}$, then there exists $ {x_0} \in {S_0}$ such that $ {T_t}({x_0}) = {x_0}$ for all $ t \geqq 0$. Minor extensions of Browder's work on ``nonejective'' and ``nonrepulsive'' fixed points are also given, with similar results for flows.


References [Enhancements On Off] (What's this?)

  • [1] Felix E. Browder, On a generalization of the Schauder fixed point theorem, Duke Math. J. 26 (1959), 291–303. MR 0105629
  • [2] Felix E. Browder, Another generalization of the Schauder fixed point theorem, Duke Math. J. 32 (1965), 399–406. MR 0203718
  • [3] Felix E. Browder, A further generalization of the Schauder fixed point theorem, Duke Math. J. 32 (1965), 575–578. MR 0203719
  • [4] Jane Cronin, Fixed points and topological degree in nonlinear analysis, Mathematical Surveys, No. 11, American Mathematical Society, Providence, R.I., 1964. MR 0164101
  • [5] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 0044116
  • [6] A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces. I, Rozprawy Mat. 30 (1962), 93. MR 0149253
  • [7] A. Halanaĭ, Asymptotic stability and small perturbations of periodic systems of differential equations with retarded argument, Uspehi Mat. Nauk 17 (1962), no. 1 (103), 231–233 (Russian). MR 0136840
  • [8] W. A. Horn, A generalization of Browder's fixed point theorem, Abstract #611-30, Notices Amer. Math. Soc. 11 (1964), 325.
  • [9] G. Stephen Jones, The existence of periodic solutions of 𝑓′(𝑥)=-𝛼𝑓(𝑥-1){1+𝑓(𝑥)}, J. Math. Anal. Appl. 5 (1962), 435–450. MR 0141837
  • [10] G. Stephen Jones, Asymptotic fixed point theorems and periodic systems of functional-differential equations, Contributions to Differential Equations 2 (1963), 385–405. MR 0158135
  • [11] G. Stephen Jones, Periodic motions in Banach space and applications to functional-differential equations, Contributions to Differential Equations 3 (1964), 75–106. MR 0163039
  • [12] -, Hereditary dependence in the theory of differential equations. I, University of Maryland Tech. Note BN-385, 1965.
  • [13] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180.
  • [14] A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), no. 1, 767–776 (German). MR 1513031, 10.1007/BF01472256

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.85

Retrieve articles in all journals with MSC: 47.85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0267432-1
Keywords: Banach space, fixed points, asymptotic fixed point theorems, compact mappings, flows, nonejective fixed points, nonrepulsive fixed points
Article copyright: © Copyright 1970 American Mathematical Society