Some fixed point theorems for compact maps and flows in Banach spaces.

Author:
W. A. Horn

Journal:
Trans. Amer. Math. Soc. **149** (1970), 391-404

MSC:
Primary 47.85

DOI:
https://doi.org/10.1090/S0002-9947-1970-0267432-1

MathSciNet review:
0267432

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be convex subsets of the Banach space *X*, with and closed and open in . If *f* is a compact mapping of into *X* such that and for some , then *f* has a fixed point in . (This extends a result of F. E. Browder published in 1959.) Also, if is a continuous flow on the Banach space *X*, are convex subsets of *X* with and compact and open in , and for some , where for all , then there exists such that for all . Minor extensions of Browder's work on ``nonejective'' and ``nonrepulsive'' fixed points are also given, with similar results for flows.

**[1]**Felix E. Browder,*On a generalization of the Schauder fixed point theorem*, Duke Math. J.**26**(1959), 291–303. MR**0105629****[2]**Felix E. Browder,*Another generalization of the Schauder fixed point theorem*, Duke Math. J.**32**(1965), 399–406. MR**0203718****[3]**Felix E. Browder,*A further generalization of the Schauder fixed point theorem*, Duke Math. J.**32**(1965), 575–578. MR**0203719****[4]**Jane Cronin,*Fixed points and topological degree in nonlinear analysis*, Mathematical Surveys, No. 11, American Mathematical Society, Providence, R.I., 1964. MR**0164101****[5]**J. Dugundji,*An extension of Tietze’s theorem*, Pacific J. Math.**1**(1951), 353–367. MR**0044116****[6]**A. Granas,*The theory of compact vector fields and some of its applications to topology of functional spaces. I*, Rozprawy Mat.**30**(1962), 93. MR**0149253****[7]**A. Halanaĭ,*Asymptotic stability and small perturbations of periodic systems of differential equations with retarded argument*, Uspehi Mat. Nauk**17**(1962), no. 1 (103), 231–233 (Russian). MR**0136840****[8]**W. A. Horn,*A generalization of Browder's fixed point theorem*, Abstract #611-30, Notices Amer. Math. Soc.**11**(1964), 325.**[9]**G. Stephen Jones,*The existence of periodic solutions of 𝑓′(𝑥)=-𝛼𝑓(𝑥-1){1+𝑓(𝑥)}*, J. Math. Anal. Appl.**5**(1962), 435–450. MR**0141837**, https://doi.org/10.1016/0022-247X(62)90017-3**[10]**G. Stephen Jones,*Asymptotic fixed point theorems and periodic systems of functional-differential equations*, Contributions to Differential Equations**2**(1963), 385–405. MR**0158135****[11]**G. Stephen Jones,*Periodic motions in Banach space and applications to functional-differential equations*, Contributions to Differential Equations**3**(1964), 75–106. MR**0163039****[12]**-,*Hereditary dependence in the theory of differential equations*. I, University of Maryland Tech. Note BN-385, 1965.**[13]**J. Schauder,*Der Fixpunktsatz in Funktionalräumen*, Studia Math.**2**(1930), 171-180.**[14]**A. Tychonoff,*Ein Fixpunktsatz*, Math. Ann.**111**(1935), no. 1, 767–776 (German). MR**1513031**, https://doi.org/10.1007/BF01472256

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47.85

Retrieve articles in all journals with MSC: 47.85

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0267432-1

Keywords:
Banach space,
fixed points,
asymptotic fixed point theorems,
compact mappings,
flows,
nonejective fixed points,
nonrepulsive fixed points

Article copyright:
© Copyright 1970
American Mathematical Society