Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A generalization of the Siegel-Walfisz theorem


Author: Larry Joel Goldstein
Journal: Trans. Amer. Math. Soc. 149 (1970), 417-429
MSC: Primary 10.65
DOI: https://doi.org/10.1090/S0002-9947-1970-0274416-6
MathSciNet review: 0274416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The uniform prime number theorem for primes in arithmetic progressions is generalized to the setting of Hecke L-series.


References [Enhancements On Off] (What's this?)

  • [1] S. Lang and J. T. Tate (editors), Collected papers of Emil Artin, Addison-Wesley, Reading, Mass., 1965. MR 31 #1159. MR 0176888 (31:1159)
  • [2] K. Chandrasekharan, Lectures on the Riemann Zeta Function, Tata Institute of Fundamental Research, Bombay, 1953.
  • [3] E. Fogels, On the zeros of Hecke's L-functions. I, II, III, Acta Arith. 7 (1961), 87-106; 7 (1961), 131-147; 8 (1963), 307-309. MR 25 #55. MR 0136585 (25:55)
  • [4] L. Goldstein, Analogues of Artin's conjecture, Bull. Amer. Math. Soc. 74 (1968), 517-519. MR 0223328 (36:6376)
  • [5] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der Algebraischen Zahlkörper, 2nd ed., Physica-Verlag, Wurzburg, 1965. MR 33 #4045a.
  • [6] S. Lang, Algebraic numbers, Addison-Wesley, Reading, Mass., 1964. MR 28 #3974. MR 0160763 (28:3974)
  • [7] T. Mitsui, Generalized prime number theorem, Japan J. Math. 26 (1956), 1-42. MR 19, 1161. MR 0092814 (19:1161g)
  • [8] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin and New York, 1957. MR 19, 393. MR 0087685 (19:393b)
  • [9] C. L. Siegel, Über die Classenzahl Quadratischer Korper, Acta Arith. 1 (1937), 83-86.
  • [10] J. Tate, Fourier analysis in number fields and Hecke's zeta-functions, Proc. Instructional Conf. Algebraic Number Theory (Brighton, 1965), Thompson, Washington, D. C., 1967, pp. 305-347. MR 36 #121. MR 0217026 (36:121)
  • [11] N. Tchebotarev, Studien über Primzahldichtigkeiten. I, II, Kazan. Univ. Fiz. Mat. Obšč. Izv. Ser. 3 (1927), 14-20; 3 (1927), 1-17.
  • [12] E. C. Titchmarsh, The theory of the Riemann zeta function, 2nd ed., Clarenden Press, Oxford, 1951. MR 13, 741. MR 0046485 (13:741c)
  • [13] W. Walfisz, Zur additiven Zahlentheorie. II, Math. Z. 40 (1936), 592-607. MR 1545584
  • [14] A. Weil, Basic number theory, Die Grundlehren der math. Wissenschaften, Band 114, Springer-Verlag, Berlin and New York, 1967. MR 38 #3244. MR 0234930 (38:3244)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.65

Retrieve articles in all journals with MSC: 10.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0274416-6
Keywords: Number field, zeta function, grössencharacter, prime number theorem
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society