Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the shrinkability of decompositions of $ 3$-manifolds


Author: William L. Voxman
Journal: Trans. Amer. Math. Soc. 150 (1970), 27-39
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9947-1970-0261577-8
MathSciNet review: 0261577
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An upper semicontinuous decomposition $ G$ of a metric space $ M$ is said to be shrinkable in case for each covering $ \mathcal{U}$ of the union of the nondegenerate elements, for each $ \varepsilon > 0$, and for an arbitrary homeomorphism $ h$ from $ M$ onto $ M$, there exists a homeomorphism $ f$ from $ M$ onto itself such that

(1) if $ x \in M - ( \cup \{ U:U \in \mathcal{U}\} )$, then $ f(x) = h(x)$,

(2) for each $ g \in G$, (a) $ \operatorname{diam} f[g] < \varepsilon $ and (b) there exists $ D \in \mathcal{U}$ such that $ h[D] \supset h[g] \cup f[g]$.

Our main result is that if $ G$ is a cellular decomposition of a $ 3$-manifold $ M$, then $ M/G = M$ if and only if $ G$ is shrinkable. We also define concepts of local and weak shrinkability, and we show the equivalence of the various types of shrinkability for certain cellular decompositions. Some applications of these notions are given, and extensions of theorems of Bing and Price are proved.


References [Enhancements On Off] (What's this?)

  • [1] S. Armentrout, On embedding decomposition spaces of $ {E^n}$ in $ {E^{n + 1}}$, Fund. Math. 61 (1967), 1-21. MR 36 #7116. MR 0224069 (36:7116)
  • [2] -, Concerning cellular decompositions of $ 3$-manifolds that yield $ 3$-manifolds, Trans. Amer. Math. Soc. 133 (1968), 307-332. MR 37 #5859. MR 0230296 (37:5859)
  • [3] -, Shrinkability of certain decompositions of $ {E^3}$ that yield $ {E^3}$, (to appear).
  • [4] -, Concerning cellular decompositions of $ 3$-manifolds with boundary, Trans. Amer. Math. Soc. 137 (1969), 231-236. MR 38 #5224. MR 0236931 (38:5224)
  • [5] R. H. Bing, A decomposition of $ {E^3}$ into points and tame arcs such that the decomposition space is topologically different from $ {E^3}$, Ann. of Math. (2) 65 (1957), 484-500. MR 19, 1187. MR 0092961 (19:1187g)
  • [6] -, Upper semicontinuous decompositions of $ {E^3}$, Ann. of Math. (2) 65 (1957), 363-374. MR 19, 1187. MR 0092960 (19:1187f)
  • [7] -, Point-like decompositions of $ {E^3}$, Fund. Math. 50 (1961/62), 431-453. MR 25 #560. MR 0137104 (25:560)
  • [8] K. Borsuk, Theory of retracts, Monogr. Mat., Tom 44, PWN, Warsaw, 1967. MR 35 #7306. MR 0216473 (35:7306)
  • [9] K. W. Kwun, Upper semicontinuous decompositions of the $ n$-sphere, Proc. Amer. Math. Soc. 13 (1962), 284-290. MR 25 #3512. MR 0140089 (25:3512)
  • [10] L. F. McAuley, ``Upper semicontinuous decompositions of $ {E^3}$ into $ {E^3}$ and generalizations to metric spaces'' in Topology of $ 3$-manifolds and related topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 21-26. MR 25 #4502. MR 0141089 (25:4502)
  • [11] J. M. Martin, ``Sewing of crumpled cubes which do not yield $ {S^3}$'' in Topology seminar, Wisconsin, 1965, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 57-60. MR 34 #1974.
  • [12] T. M. Price, Decompositions of $ 3$-manifolds and pseudo-isotopies, (to appear).
  • [13] -, A necessary condition that a cellular upper semicontinuous decomposition of $ {E^n}$ yield $ {E^n}$, Trans. Amer. Math. Soc. 122 (1966), 427-435. MR 33 #1843. MR 0193627 (33:1843)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0261577-8
Keywords: Cellular decompositions of $ 3$-manifolds, shrinkability, 0-dimensional decompositions, weakly shrinkable, locally shrinkable
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society