Singly generated homogeneous algebras
Author:
Ronn Carpenter
Journal:
Trans. Amer. Math. Soc. 150 (1970), 457468
MSC:
Primary 46.50
MathSciNet review:
0262829
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: With each point in the spectrum of a singly generated algebra we associate an algebra of germs of functions. It is shown that if is isomorphic to the algebra of germs of analytic functions of a single complex variable, then the spectrum of contains an analytic disc about . The algebra is called homogeneous if the algebras are all isomorphic. If is homogeneous and none of the algebras have zero divisors, we show that is the direct sum of its radical and either an algebra of analytic functions or countably many copies of the complex numbers. If is a uniform algebra which is homogeneous, then it is shown that is either the algebra of analytic functions on an open subset of the complex numbers or the algebra of all continuous functions on its spectrum.
 [1]
Richard
Arens, Dense inverse limit rings, Michigan Math. J
5 (1958), 169–182. MR 0105034
(21 #3780)
 [2]
F.
T. Birtel, Singlygenerated Liouville 𝐹algebras,
Michigan Math. J. 11 (1964), 89–94. MR 0161167
(28 #4376)
 [3]
R.
M. Brooks, Boundaries for locally 𝑚convex algebras,
Duke Math. J. 34 (1967), 103–116. MR 0225167
(37 #762)
 [4]
, On the spectrum of finitely generated locally convex algebras, Studia Math. 29 (1968), 143150.
 [5]
, On singlygenerated locally convex algebras (preprint).
 [6]
James
Dugundji, Topology, Allyn and Bacon Inc., Boston, Mass., 1966.
MR
0193606 (33 #1824)
 [7]
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York, 1958. MR 0117523
(22 #8302)
 [8]
Andrew
M. Gleason, Finitely generated ideals in Banach algebras, J.
Math. Mech. 13 (1964), 125–132. MR 0159241
(28 #2458)
 [9]
Robert
C. Gunning and Hugo
Rossi, Analytic functions of several complex variables,
PrenticeHall Inc., Englewood Cliffs, N.J., 1965. MR 0180696
(31 #4927)
 [10]
Robert
McKissick, A nontrivial normal sup norm
algebra, Bull. Amer. Math. Soc. 69 (1963), 391–395. MR 0146646
(26 #4166), http://dx.doi.org/10.1090/S000299041963109404
 [11]
S.
N. Mergelyan, On the representation of functions by series of
polynomials on closed sets, Doklady Akad. Nauk SSSR (N.S.)
78 (1951), 405–408 (Russian). MR 0041929
(13,23f)
 [12]
Ernest
A. Michael, Locally multiplicativelyconvex topological
algebras, Mem. Amer. Math. Soc., 1952 (1952),
no. 11, 79. MR 0051444
(14,482a)
 [13]
Melvin
Rosenfeld, Commutative 𝐹algebras, Pacific J. Math.
16 (1966), 159–166. MR 0190786
(32 #8196)
 [1]
 R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169182. MR 21 #3780. MR 0105034 (21:3780)
 [2]
 F. T. Birtel, Singlygenerated Liouville algebras, Michigan Math. J. 11 (1964), 8994. MR 28 #4376. MR 0161167 (28:4376)
 [3]
 R. M. Brooks, Boundaries for locally convex algebras, Duke Math. J. 34 (1967), 103116. MR 37 #762. MR 0225167 (37:762)
 [4]
 , On the spectrum of finitely generated locally convex algebras, Studia Math. 29 (1968), 143150.
 [5]
 , On singlygenerated locally convex algebras (preprint).
 [6]
 J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
 [7]
 N. Dunford and J. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
 [8]
 A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125132. MR 28 #2458. MR 0159241 (28:2458)
 [9]
 R. Gunning and H. Rossi, Analytic functions of several complex variables, PrenticeHall, Englewood Cliffs, N. J., 1965. MR 31 #4927. MR 0180696 (31:4927)
 [10]
 R. McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391395. MR 26 #4166. MR 0146646 (26:4166)
 [11]
 S. N. Mergelyan, On the representation of functions by series of polynomials on closed sets, Dokl. Akad. Nauk SSSR 78 (1951), 405408; English transl., Amer. Math. Soc. Transl. (1) 3 (1962), 287293. MR 13, 23. MR 0041929 (13:23f)
 [12]
 E. A. Michael, Locally multiplicativelyconvex topological algebras, Mem. Amer. Math. Soc. No. 11 (1952). MR 14, 482. MR 0051444 (14:482a)
 [13]
 M. Rosenfeld, Commutative algebras, Pacific J. Math. 16 (1966), 159166. MR 32 #8196. MR 0190786 (32:8196)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46.50
Retrieve articles in all journals
with MSC:
46.50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197002628298
PII:
S 00029947(1970)02628298
Keywords:
algebra,
singly generated,
homogeneous,
analytic disc,
uniform algebra
Article copyright:
© Copyright 1970 American Mathematical Society
