Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Estimates for the number of real-valued continuous functions


Authors: W. W. Comfort and Anthony W. Hager
Journal: Trans. Amer. Math. Soc. 150 (1970), 619-631
MSC: Primary 54.28
DOI: https://doi.org/10.1090/S0002-9947-1970-0263016-X
MathSciNet review: 0263016
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is a familiar fact that $ \vert C(X)\vert \leqq {2^{\delta X}}$, where $ \vert C(X)\vert$ is the cardinal number of the set of real-valued continuous functions on the infinite topological space $ X$, and $ \delta X$ is the least cardinal of a dense subset of $ X$. While for metrizable spaces equality obtains, for some familiar spaces--e.g., the one-point compactification of the discrete space of cardinal $ 2\aleph 0$--the inequality can be strict, and the problem of more delicate estimates arises. It is hard to conceive of a general upper bound for $ \vert C(X)\vert$ which does not involve a cardinal property of $ X$ as an exponent, and therefore we consider exponential combinations of certain natural cardinal numbers associated with $ X$. Among the numbers are $ wX$, the least cardinal of an open basis, and $ wcX$, the least $ \mathfrak{m}$ for which each open cover of $ X$ has a subfamily with $ \mathfrak{m}$ or fewer elements whose union is dense. We show that $ \vert C(X)\vert \leqq {(wX)^{wcX}}$, and that this estimate is best possible among the numbers in question. (In particular, $ {(wX)^{wcX}} \leqq {2^{\delta X}}$ always holds.) In fact, it is only with the use of a version of the generalized continuum hypothesis that we succeed in finding an $ X$ for which $ \vert C(X)\vert < {(wX)^{wcX}}$.


References [Enhancements On Off] (What's this?)

  • [B] Heinz Bachmann, Transfinite Zahlen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 1, Springer-Verlag, Berlin and New York, 1955. MR 17, 134. MR 0071481 (17:134d)
  • [BCM] R. W. Bagley, E. H. Connell and J. D. McKnight, Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), 500-506. MR 20 #3523. MR 0097043 (20:3523)
  • [CHN] W. W. Comfort, Neil Hindman and S. Negrepontis, $ F'$-spaces and their product with $ P$-spaces, Pacific J. Math. 28 (1969), 489-502. MR 0242106 (39:3440)
  • [deG] J. deGroot, Discrete subspaces of Hausdorff spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 537-544. MR 35 #956. MR 0210061 (35:956)
  • [Ef] B. Efimov, Extremally disconnected bicompacta whose $ \pi $-weight is the continuum, Dokl. Akad. Nauk SSSR 183 (1968), 511-514 = Soviet Math. Dokl. 9 (1968), 1404-1407. MR 38 #5172. MR 0236878 (38:5172)
  • [En] R. Engelking, Outline of general topology, North-Holland, Amsterdam and Interscience, New York, 1968. MR 37 #5836. MR 0230273 (37:5836)
  • [ET] P. Erdös and A. Tarski, On families of mutually exclusive sets, Ann. of Math. (2) 44 (1943), 315-329. MR 4, 269. MR 0008249 (4:269b)
  • [F] Zdeněk Frolík, Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J. 9 (84) (1959), 172-217. (Russian) MR 21 #3821. MR 0105075 (21:3821)
  • [GJ] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [H$ _{1}$] Anthony W. Hager, Approximation of real continuous functions on Lindelöf spaces, Proc. Amer. Math. Soc. 22 (1969), 156-163. MR 0244748 (39:6062)
  • [H$ _{2}$] -, Projections of zero-sets (and the fine uniformity on a product), Trans. Amer. Math. Soc. 140 (1969), 87-94. MR 0242114 (39:3448)
  • [He] Edwin Hewitt, A remark on density characters, Bull. Amer. Math. Soc. 52 (1946), 641-643. MR 8, 139. MR 0017329 (8:139f)
  • [Hi] Neil Hindman, On $ P$-like spaces and their product with $ P$-spaces, Doctoral Dissertation, Wesleyan University, Middletown, Conn., 1969.
  • [I] J. R. Isbell, Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R. I., 1964. MR 30 #561. MR 0170323 (30:561)
  • [K] J. Kerstan, Zur charakterisierung der pseudokompakten Räume, Math. Nachr. 16 (1957), 289-293. MR 19, 1069. MR 0092141 (19:1069c)
  • [Ku] Arthur H. Kruse, Badly incomplete normed linear spaces, Math. Z. 83 (1964), 314-320. MR 29 #3859. MR 0166586 (29:3859)
  • [M] Edward Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127-143. MR 9, 98. MR 0021680 (9:98b)
  • [N] Norman Noble, Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381-391. MR 0250261 (40:3500)
  • [O] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/61), 157-166. MR 25 #4055; MR 26, 1543. MR 0140638 (25:4055)
  • [Pz] E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835-837. MR 6, 119. MR 0011104 (6:119g)
  • [Pm] V. I. Ponomarev, Spaces co-absolute with metric spaces, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 101-132 = Russian Math. Surveys 21 (1966), no. 4, 87-113. MR 34 #788. MR 0200902 (34:788)
  • [RS] K. A. Ross and A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71 (1964), 398-403. MR 29 #1611. MR 0164314 (29:1611)
  • $ _{1}$] N. A. Šanin, On intersection of open subsets in the product of topological spaces, Dokl. Akad. Nauk SSSR 53 (1946), 499-501. (Russian) MR 8, 334. MR 0018815 (8:334a)
  • $ _{2}$] -, On the product of topological spaces, Trudy Mat. Inst. Steklov. 24 (1948). (Russian) MR 10, 287. MR 0027310 (10:287b)
  • [S] Yu. M. Smirnov, On the weight of the ring of bounded continuous functions over a normal space, Mat. Sb. 30 (72) (1952), 213-218. (Russian) MR 14, 70. MR 0048789 (14:70b)
  • [T] Alfred Tarski, Quelques théorèmes sur les alelphs, Fund. Math. 7 (1925), 1-14.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.28

Retrieve articles in all journals with MSC: 54.28


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0263016-X
Keywords: Real-valued continuous functions, weight, density character, Stone-Čech compactification, Marczewski Theorem, Šanin Theorem, continuum hypothesis
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society