Dual spaces of weighted spaces

Author:
W. H. Summers

Journal:
Trans. Amer. Math. Soc. **151** (1970), 323-333

MSC:
Primary 46.25

DOI:
https://doi.org/10.1090/S0002-9947-1970-0270129-5

MathSciNet review:
0270129

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The topological duals of a large class of weighted spaces of continuous functions are characterized as spaces of Radon measures which can be factored into a product of a weight function and a bounded Radon measure. We next obtain a representation for a base for the equicontinuous subsets of these dual spaces and for the extremal points of the members of this base. Finally, among other applications, these ideas make possible an extension of the representation theorem for biequicontinuous completed tensor products of weighted spaces obtained by the author in an earlier paper.

**[1]**R. Creighton Buck,*Bounded continuous functions on a locally compact space*, Michigan Math. J.**5**(1958), 95–104. MR**0105611****[2]**H. S. Collins and J. R. Dorroh,*Remarks on certain function spaces*, Math. Ann.**176**(1968), 157–168. MR**0222644**, https://doi.org/10.1007/BF02056983**[3]**John B. Conway,*The strict topology and compactness in the space of measures*, Bull. Amer. Math. Soc.**72**(1966), 75–78. MR**0187054**, https://doi.org/10.1090/S0002-9904-1966-11423-4**[4]**John B. Conway,*The strict topology and compactness in the space of measures. II*, Trans. Amer. Math. Soc.**126**(1967), 474–486. MR**0206685**, https://doi.org/10.1090/S0002-9947-1967-0206685-2**[5]**R. E. Edwards,*Functional analysis. Theory and applications*, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR**0221256****[6]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[7]**Leopoldo Nachbin,*Weighted approximation for algebras and modules of continuous functions: Real and self-adjoint complex cases*, Ann. of Math. (2)**81**(1965), 289–302. MR**0176353**, https://doi.org/10.2307/1970617**[8]**Leopoldo Nachbin,*Elements of approximation theory*, Van Nostrand Mathematical Studies, No. 14, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0217483****[9]**J. B. Prolla,*Weighted approximation and operator algebras*, Ph.D. Dissertation, New York University, 1968.**[10]**A. P. Robertson and W. J. Robertson,*Topological vector spaces*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 53, Cambridge University Press, New York, 1964. MR**0162118****[11]**Walter Rudin,*Real and complex analysis*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210528****[12]**Taira Shirota,*On locally convex vector spaces of continuous functions*, Proc. Japan Acad.**30**(1954), 294–298. MR**0064389****[13]**W. H. Summers,*A representation theorem for biequicontinuous completed tensor products of weighted spaces*, Trans. Amer. Math. Soc.**146**(1969), 121–131. MR**0251521**, https://doi.org/10.1090/S0002-9947-1969-0251521-3**[14]**B. A. Taylor,*Some locally convex spaces of entire functions*, Proc. Sympos. Pure Math., vol. 11, Amer. Math. Soc., Providence, R. I., 1968, pp. 431-467.**[15]**V. S. Varadarajan,*Measures on topological spaces*, Mat. Sb. (N.S.)**55 (97)**(1961), 35–100 (Russian). MR**0148838****[16]**Seth Warner,*The topology of compact convergence on continuous function spaces*, Duke Math. J.**25**(1958), 265–282. MR**0102735**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46.25

Retrieve articles in all journals with MSC: 46.25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0270129-5

Keywords:
Weighted spaces of continuous functions,
strict topology,
Radon measure,
equicontinuous sets,
extremal points,
Nachbin family,
factorization,
biequicontinuous completed tensor product,
Mackey space

Article copyright:
© Copyright 1970
American Mathematical Society