CONTINUA FOR WHICH THE SET FUNCTION T IS CONTINUOUS1

BY

DAVID P. BELLAMY

Abstract. The set-valued set function T has been studied extensively as an aid to classifying metric and Hausdorff continua. It is a consequence of earlier work of the author with H. S. Davis that T, considered as a map from the hyperspace of closed subsets of a compact Hausdorff space to itself, is upper semicontinuous. We show that in a continuum for which T is actually continuous (in the exponential, or Vietoris finite, topology) semilocal connectedness implies local connectedness, and raise the question of whether any nonlocally connected continuum for which T is continuous must be indecomposable.

1. Definitions and notation. The letters S and Z will denote compact Hausdorff spaces. The definition of the set-function T and the notion of T-additivity, [1] and [2], are assumed. A continuum S is T-symmetric iff for each pair of closed sets $A, B \subseteq S$, $A \cap T(B) = \emptyset$ whenever $B \cap T(A) = \emptyset$. S is point T-symmetric iff this definition holds whenever A and B are singletons. (Compare this with Definition 1.1 of [4].) S is almost connected im kleinen [3] at $x \in S$ provided every open set containing x contains also a continuum with nonempty interior; S is connected im kleinen at x iff this W can always be chosen to be a continuum neighborhood of x. Observe that S is connected im kleinen at p if and only if: $p \in A$ iff $p \in T(A)$ for every closed set $A \subseteq S$ [2]. A closed set $A \subseteq S$ is a closed domain [5, p. 74] iff $A = \text{Cl Int } (A)$. If in addition A is connected, A is called a continuum domain. S will be called semilocally connected at p iff $T(p) = \{p\}$. (See [6, p. 19] and [2].)

$\mathcal{F}(S)$ denotes the space of nonempty closed subsets of S and $\mathcal{W}(S)$ the space of nonempty subcontinua of S with the usual exponential topology [5]. T is of course defined for all subsets of S. The phrase "T is continuous for S" will mean that

$$T|_{\mathcal{F}(S)}: \mathcal{F}(S) \rightarrow \mathcal{F}(S)$$

is continuous. For $O \subseteq S$, define

$$\mathcal{F}(O) = \{A \in \mathcal{F}(S) : A \subseteq O\}, \quad \mathcal{I}(O) = \{A \in \mathcal{F}(S) : A \cap O \neq \emptyset\}.$$

Finally, the set function aT is defined by: $p \in S - aT(X)$ iff there exists a finite collection of continua, $\{W_i\}_{i=1}^n$, such that $p \in \text{Int } \bigcap_{i=1}^n W_i$ while $X \cap \bigcap_{i=1}^n W_i = \emptyset$.

Received by the editors November 3, 1969.
AMS 1969 Subject Classifications. Primary 5465, 5455.
Key Words and Phrases. Continuum neighborhoods, continuous set-valued functions, almost connected im kleinen, set function T, T-additive, T-symmetric, indecomposable continuum, semilocally connected continuum.

1 This research supported in part by the University of Delaware Research Foundation.
2. **Introduction.** The first result is an easy consequence of Theorem A of [1]. The proof is left to the reader.

Lemma 1. \(T : \mathcal{F}(S) \to \mathcal{F}(S) \) is an upper semicontinuous mapping.

This suggests that the continuity-related properties of, and points of discontinuity of \(T \) may be interesting. It is the purpose of this paper to examine the extreme case, when \(T \) is continuous for the continuum \(S \). There are two trivial cases where this is true: (1) \(S \) is an indecomposable continuum. Here \(T(A) = S \) for all \(A \in \mathcal{F}(S) \), (2) \(S \) is connected im kleinen, or locally connected, in which case \(T(A) = A \) for each \(A \in \mathcal{F}(S) \). The question of whether these are the only possibilities appears to be difficult. It is shown here that if \(T \) is continuous and \(S \) is not connected im kleinen, then it also is neither almost connected im kleinen nor semilocally connected.

3. **Preliminary lemmas.**

Lemma 2. \(T \) is idempotent on \(S \) iff for every subcontinuum \(W \subseteq S \) and \(x \in \text{Int } W \), there is a continuum \(M \) with \(x \in \text{Int } M \subseteq M \subseteq \text{Int } W \).

Indication of Proof. It is clear that this condition implies \(T^2 = T \). To obtain the converse, apply the idempotency of \(T \) to \(S - W \).

Corollary 1. If \(T \) is idempotent on \(S \), \(W \subseteq S \) is a continuum, and \(K \) is a component of \(\text{Int } W \), then \(K \) is open.

Proof. Let \(p \in K \). Let \(M \) be a continuum neighborhood of \(p \) with \(M \subseteq \text{Int } W \). Then \(M \subseteq K \) so that \(p \in \text{Int } K \).

Corollary 2. If \(T \) is idempotent on \(S \), \(x \in S \), and \(W \) is a continuum neighborhood of \(x \), then \(x \) has a continuum neighborhood \(M \subseteq W \) which is a continuum domain.

Proof. Let \(M \) be the closure of that component of \(\text{Int } W \) containing \(x \).

Lemma 3. If \(S \) is a continuum for which \(T \) is continuous, then \(T \) is idempotent on \(S \) also.

Proof. Let \(W \subseteq S \) be a subcontinuum and \(x \in \text{Int } W \). Now, \(T^{-1}(\mathcal{F}(S - \text{Int } W)) \) is a closed set by continuity of \(T \) and

\[
\mathcal{F}(S - W) \subseteq T^{-1}(\mathcal{F}(S - \text{Int } W))
\]

by definition of \(T \). Since, for \(W \neq S \), \(S - \text{Int } W \) is a limit point of \(\mathcal{F}(S - W) \), it follows that \(T(S - \text{Int } W) \subseteq S - \text{Int } W \). Then, \(x \) has a continuum neighborhood \(M \) missing \(S - \text{Int } W \). Thus \(M \subseteq \text{Int } W \). If \(W = S \), it suffices to choose \(M = S \), so that in either case the proof is complete by Lemma 2.

Lemma 4. If \(S \) is a continuum for which \(T \) is idempotent and in which \(T(p, q) \) is a continuum for all \(p, q \in S \), then \(S \) is indecomposable.
Proof. Suppose not. Then by Corollary 2, there is a nonempty proper continuum domain \(W \subseteq S \). Let \(p_0 \) and \(q_0 \) be any two points in \(S - \text{Int} \, W \). Since \(T(p_0, q_0) \cap \text{Int} \, W = \emptyset \) and \(T(p_0, q_0) \) is connected, \(p_0 \) and \(q_0 \) lie in the same component of \(S - \text{Int} \, W \). Thus, \(S - \text{Int} \, W \) is a continuum. By Lemma 2, there is a continuum \(M \), with nonempty interior, such that \(M \subseteq \text{Int} (S - \text{Int} \, W) = S - W \). Then, let \(S - (\text{Int} \, W \cup \text{Int} \, M) = L \) and let \(p_1, q_1 \) be any two points in \(L \). \(T(p_1, q_1) \) is a continuum contained in \(L \), so that \(L \) is a continuum also. Now suppose \(p \in \text{Int} \, M \) and \(q \in \text{Int} \, W \). Then \(T(p, q) \) is not a continuum since it misses \(\text{Int} \, L \), a contradiction.

The proofs of the next two lemmas are left to the reader. They involve standard compactness arguments.

Lemma 5. If \(A \subseteq S \) is closed, \(aT(A) = \bigcup_{p \in A} T(p) \).

Lemma 6. \(S \) is \(T \)-additive iff \(T(A) = aT(A) \) for every closed \(A \subseteq S \).

Lemma 7. If \(T \) is continuous for \(S \), so is \(aT \).

Proof. It is clear that \(aT \) is upper semicontinuous. (Mimic the proof of Theorem A of [1].) Thus suppose \(O \) is open in \(S \), and \(A \in aT^{-1}(\mathcal{G}(O)) \), or \(aT(A) \cap O \neq \emptyset \). Then by Lemma 5 there is a \(p \in A \) with \(T(p) \cap O \neq \emptyset \). By continuity of \(T \), there is an open set \(U \subseteq S \) containing \(p \) such that, for all \(x \in U \), \(T(x) \cap O \neq \emptyset \). Then if \(B \in \mathcal{G}(U) \), \(aT(B) \cap O \neq \emptyset \), so that \(A \in \mathcal{G}(U) \subseteq aT^{-1}(\mathcal{G}(O)) \). Thus \(aT^{-1}(\mathcal{G}(O)) \) is open.

Lemma 8. If \(S \) is a point \(T \)-symmetric continuum for which \(T \) is continuous, then \(T(p, q) = T(p) \cup T(q) \) for every \(p, q \in S \).

Proof. For each \(p \in S \), define

\[
A(p) = \{ q : T(p, q) \in \mathcal{W}(S) \}, \quad B(p) = \{ q : T(p, q) = T(p) \cup T(q) \}.
\]

It follows from the continuity of \(T \) and \(aT \) and the fact that \(\mathcal{W}(S) \) is closed in \(\mathcal{F}(S) \) that both \(A(p) \) and \(B(p) \) are closed in \(S \). If \(x \in T(p) \), \(T(x) = T(p) = T(x, p) \) by point \(T \)-symmetry and idempotency. Since \(T(p) \) is a continuum (by Corollary 1 of [1]), \(x \in A(p) \cap B(p) \). Also, if \(x \in A(p) \cap B(p) \), \(T(p, x) = T(p) \cup T(x) \), and this set is a continuum. Hence \(T(p) \cap T(x) \neq \emptyset \). Let \(q \in T(p) \cap T(x) \). Then \(x \in T(q) \subseteq T^2(p) = T(p) \). Thus, \(A(p) \cap B(p) = T(p) \).

Now, suppose there is a \(p \in S \) such that \(B(p) \neq T(p) \). Let \(y \in A(p) \) and \(x \in B(p) \) be arbitrary points. Then \(T(x, y) = T(x) \cup T(p) \) and \(T(x) \cap T(p) = \emptyset \). Hence, \(T(x) \cap A(p) = \emptyset \), since otherwise \((T(x) \cap A(p)) \cup (T(x) \cap B(p)) \) is a separation of \(T(x) \). Let \(U \) be an open set with \(U \cap A(p) = \emptyset \) while \(T(x) \subseteq U \). Now suppose \(q \in \text{Bd}(U) \). Since \(q \notin T^2(x, p) \), there is a continuum \(W \) with \(q \in \text{Int} \, W \) and \(W \cap T(x, p) = \emptyset \). Then \(W \subseteq B(p) \), since otherwise \((A(p) \cap W) \cup (B(p) \cap W) \) is a separation of \(W \). Therefore, \(y \notin W \), and \(q \notin T(x, y) \). Then

\[
T(x, y) = (T(x, y) \cap U) \cup (T(x, y) \cap (S-U)) \, \text{sep}
\]
and by Corollary 2 of [1], $T(x, y) = T(x) \cup T(y)$, so that $x \in B(y)$. Thus, $B(p) - T(p) \subseteq B(y)$, and since $B(y)$ is closed and $p \in \text{Cl} (B(p) - T(p))$, (If not, $p \in \text{Int} A(p)$, and since $A(p)$ is a continuum, there is a continuum M with $p \in \text{Int} M \subseteq \text{Int} A(p)$. Hence M misses some $q \in T(p)$, and $p \notin T(q)$, contradicting the point T-symmetry of S.) it follows that $p \in B(y)$, or that $y \in B(p)$. But $y \in A(p)$, so that $y \in T(p)$, and $A(p) = T(p)$. By contraposition, if $A(p) \neq T(p)$, $B(p) = T(p)$, so that for each $p \in S$ either $A(p) = S$ or $B(p) = S$. Suppose that there is a $p \in S$ such that $A(p) = S$. Let $q \in S$ be arbitrary. Either $q \in T(p)$, in which case $A(p) = A(q) = S$; or $q \notin T(p)$, in which case $q \in A(p)$ so that $p \in A(q)$. Since $p \notin T(q)$, $A(q) \neq T(q)$, so that $A(q) = S$. Thus, either $A(p) = S$ for every $p \in S$ or $B(p) = S$ for every $p \in S$. If $B(p) = S$ for all p, the lemma is proved, so suppose $A(p) = S$ for every p. By definition of $A(p)$ and Lemma 4, S is indecomposable, so that $B(p) = S$ for all p in this case also.

Lemma 9. If S is a point T-symmetric continuum for which T is continuous, then S is T-additive.

Proof. By Lemma 6, it suffices to prove that $T(A) = aT(A)$ for every $A \in \mathcal{F}(S)$. Since both T and aT are continuous, and the set $\{A \in \mathcal{F}(S) : A$ is finite$\}$ is dense in $\mathcal{F}(S)$, it suffices to prove that $aT(A) = T(A)$ for finite sets A. Thus, suppose M is a finite set of smallest cardinal number such that $T(M) \neq \bigcup_{p \in M} T(p)$.

As a consequence of Lemma 8, M contains at least three points. $T(M)$ is a continuum, since if $A \cup B$ is a separation of $T(M)$ by Lemma 2 of [1] and the minimality of M,

$$T(M) = T(M \cap A) \cup T(M \cap B) = \bigcup_{p \in M \cap A} T(p) \cup \bigcup_{p \in M \cap B} T(p) = \bigcup_{p \in M} T(p)$$

contrary to the choice of M. Further, if $p, q \in M$ are distinct points, then $T(p) \cap T(q) = \emptyset$, since if not, then the point T-symmetry and idempotency yield $T(p) = T(q)$, and then

$$T(M) \subseteq T(M - \{p\}) \subseteq T(M - \{p\}) \subseteq aT(M - \{p\}) \subseteq aT(M)$$

and since always $aT(M) \subseteq T(M)$, this contradicts the choice of M.

Now, let $p \in M$ be arbitrary and set $N = M - \{p\}$. Then N has at least two points, and since for distinct points $a, b \in N$, $T(a) \cap T(b) = \emptyset$, and $aT(N) = T(N)$, it follows that $T(N)$ is not a continuum. Set

$$L = \{x \in S : T(N \cup \{x\}) \neq aT(N \cup \{x\})\} = \{x \in S : T(N \cup \{x\}) \in \mathcal{W}(S)\}.$$

$L \neq \emptyset$ since $N \subseteq L$. $K \neq \emptyset$ since $p \in K$. L is closed since T, aT, and \cup are continuous, and K is closed since $\mathcal{W}(S)$ is closed in $\mathcal{F}(S)$, and T and \cup are continuous. If $y \in K \cap L$, then $T(y) \cap T(q) \neq \emptyset$ for every $q \in N$. By point T-symmetry and idempotency, $T(y) = T(q)$ for every $q \in N$, a contradiction to the fact that for
a, b ∈ N, if a ≠ b, then T(a) ≠ T(b). Thus K ∩ L = ∅. But if x /∈ L, T(N ∪ \{x\}) is a continuum by the argument applied to M, above, and x ∈ K. Hence, K ∪ L is a separation of the continuum S, and this contradiction completes the proof.

Lemma 10. If S is a continuum for which T is continuous, W ⊆ S is a continuum with nonvoid interior, and O is open in S with W ⊆ O, then there is a point p such that T(p) ⊆ O.

Proof. Either S−W is connected or it is not. If S−W is connected let p ∈ Int W. Then Cl (S−W) is a continuum neighborhood of every point outside W missing p, and T(p) ⊆ W ⊆ O. Thus, suppose M ∪ N is a separation of S−W. Then, if x ∈ M, T(x) ⊆ M, since N ∪ W is a continuum neighborhood of every point outside of M which misses x. Similarly, if x ∈ N, T(x) ⊆ N. Now let

\[A = \{x : T(x) ∩ M ∩ (S−O) ≠ ∅\}, \quad B = \{x : T(x) ∩ M ≠ ∅\}. \]

A ⊆ B, B ≠ ∅ since M ⊆ B; and B is open while A is closed by continuity of T. Since N ∩ B = ∅, B ∩ S, so that A ≠ B by connectedness of S. Let x ∈ B−A. Then T(x) ∩ M ≠ ∅, but T(x) ∩ M ∩ (S−O) = ∅. Let p ∈ T(x) ∩ M. Then T(p) ⊆ M ∩ T(x); in particular,

\[T(p) ∩ (S−O) ⊆ M ∩ T(x) ∩ (S−O) = ∅, \]

since M−M = O. Thus, T(p) ⊆ O.

The next lemma is due to Eugene Vanden Boss.

Lemma 11. A semilocally connected T-additive continuum S is connected im kleinen.

Proof. For A ⊆ S, A closed,

\[T(A) = \bigcup_{p ∈ A} T(p) = \bigcup_{p ∈ A} \{p\} = A. \]

Hence S is connected im kleinen at each point, [2].

Lemma 12. If S is a T-additive continuum for which T is continuous, and W ⊆ S is a continuum domain, then T(W) = W.

Proof. Let L = {p : T(p) ⊆ W}. Let x ∈ W. Let M be an arbitrary continuum neighborhood of x. Then Int M ∩ Int W ≠ ∅. Let y ∈ Int M ∩ Int W. Then by idempotency and Lemma 2,

\[y ∉ T(S−Int M) ∪ T(S−Int W); \]

by additivity,

\[y ∉ T((S−Int M) ∪ (S−Int W)), \quad y ∉ T(S−(Int M ∩ Int W)). \]

Hence there is a continuum N with y ∈ Int N and N ⊆ Int M ∩ Int W. Then, by Lemmas 10 and 2, there is a p ∈ Int N such that T(p) ⊆ N. Then T(p) ⊆ W so that
p ∈ L. Hence M ∩ L ≠ ∅ and x ∈ T(L), so that W ⊆ T(L). By definition of L and
additivity, T(L) ⊆ W. Thus, T(W) = T(L) = T(L) = W.

Lemma 13. If S is a continuum for which T is continuous, S is T-additive iff S is
T-symmetric.

Proof. Since T-symmetry always implies T-additivity by Theorem 7 of [2], it
suffices to prove the converse. Suppose S is T-additive and let A, B be closed sub-
sets of S with A ∩ T(B) = ∅. Then by definition of T, compactness, and Corollary
2, there exists a finite collection {Wt}1≤t≤n such that each Wt is a continuum domain,
A ⊆ ∪ Int Wt, and B ∩ (∪ Wt) = ∅. Then by additivity and Lemma 12, T(∪ Wt)
= ∪ Wt. Hence T(A) ⊆ ∪ Wt, so that T(A) ∩ B = ∅.

4. Principal results.

Theorem 1. If S is a continuum for which T is continuous and S is almost
connected im kleinen at p ∈ S, then S is semilocally connected at p.

Proof. Let

\[\mathcal{L} = \{ A : A \text{ is closed in } S \text{ and } p \in \text{Int } A \}. \]

By Lemma 10 and the almost connectedness im kleinen, the set \(\mathcal{T}(A) = \{ x : T(x) \subseteq A \} \)
is nonempty for each A ∈ \(\mathcal{L} \). By continuity of T, B(A) is closed for each A. Hence
\(\{ B(A) : A \in \mathcal{L} \} \) is a filterbase of closed sets, and \(\bigcap_{A \in \mathcal{L}} B(A) \neq \emptyset \). But,

\[\bigcap_{A \in \mathcal{L}} B(A) \subseteq \bigcap \mathcal{L} = \{ p \}. \]

Thus, T(p) ⊆ \(\bigcap \mathcal{L} = \{ p \} \) and the proof is complete.

Theorem 2. If T is both additive and continuous for the continuum S and p ∈ S,
then the following are equivalent.

1) S is semilocally connected at p.
2) S is almost connected im kleinen at p.
3) S is connected im kleinen at p.

Proof. (2) implies (1) by Theorem 1.
(3) implies (2). This is trivial.
(1) implies (3). Let O be any open set containing p. Since T(p) ∩ (S − O) = ∅,
T(S − O) ∩ \{ p \} = ∅ by Lemma 13. Thus p has a continuum neighborhood W
which misses S − O, that is, W ⊆ O.

Theorem 3. If S is a continuum for which T is continuous and S is semilocally
connected at each point, then S is connected im kleinen.

Proof. Since p ∈ T(q) iff p = q, S is point T-symmetric, and thus is T-additive
by Lemma 9 and connected im kleinen by Theorem 2.

Corollary 3. If S is a continuum for which T is continuous and S is almost
connected im kleinen at each point, then S is connected im kleinen.
5. The effect of mappings.

Definition. A continuous function \(f: S \to Z \) is called \(T \)-continuous provided that always \(fT(A) \subseteq Tf(A) \) for \(A \subseteq S \), or equivalently \(f^{-1}T(A) \supseteq Tf^{-1}(A) \) for \(A \subseteq Z \), where \(T \) is computed with respect to whichever of \(S, Z \) its argument is contained in. The simplest examples of \(T \)-continuous maps are continuous monotone maps.

The next result is due to H. S. Davis.

Lemma 14. If \(f: S \to Z \) is a continuous surjection and \(A \subseteq Z \), then \(fTf^{-1}(A) \supseteq T(A) \).

Proof. Suppose \(x \notin fTf^{-1}(A) \). Then \(f^{-1}(x) \cap Tf^{-1}(A) = \emptyset \). By definition of \(T \) and the compactness of \(f^{-1}(x) \), there is a finite collection of continua, \(\{W_i\}_{i=1}^n \) such that \(f^{-1}(x) \subseteq \bigcup_{i=1}^n \text{Int } W_i \), while \(f^{-1}(A) \cap (\bigcup_{i=1}^n W_i) = \emptyset \) and for each \(W_i \), \(W_i \cap f^{-1}(x) \neq \emptyset \). Then, \(A \cap f(\bigcup_{i=1}^n W_i) = \emptyset \), and \(f(\bigcup W_i) \) is a continuum since each component of it contains \(x \). Since \(Z - f(S - \bigcup \text{Int } W_i) \) is an open set containing \(x \) and contained in \(f(\bigcup W_i) \), it follows that \(x \notin T(A) \), and the proof is complete.

This leads to the final result about mappings which preserve continuity of \(T \).

Theorem 4. If \(S \) is a continuum for which \(T \) is continuous, and \(f: S \to Z \) is a continuous, \(T \)-continuous, open surjection, then \(T \) is continuous for \(Z \) also.

Proof. By Lemma 14 and the definition of a \(T \)-continuous map,

\[fTf^{-1}(A) = T(A) \quad \text{for every } A \subseteq Z. \]

Since \(f \) is closed and open, both \(f: \mathcal{F}(S) \to \mathcal{F}(Z) \) and \(f^{-1}: \mathcal{F}(Z) \to \mathcal{F}(S) \) are continuous. Hence the \(T \) function for \(Z \) is a composition of three continuous functions.

References

University of Delaware, Newark, Delaware 19711

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use