A COLLECTION OF SEQUENCE SPACES

BY
J. R. CALDER AND J. B. HILL

Abstract. This paper concerns a collection of sequence spaces we shall refer to as d_a spaces. Suppose $a = (a_1, a_2, \ldots)$ is a bounded number sequence and $a_i \neq 0$ for some i. Suppose \mathcal{P} is the collection of permutations on the positive integers. Then d_a denotes the set to which the number sequence $x = (x_1, x_2, \ldots)$ belongs if and only if there exists a number $k > 0$ such that

$$h_a(x) = \operatorname{lub}_{\pi \in \mathcal{P}} \left(\sum_{i=1}^{\infty} |x_{\pi(i)}| a_i \right) < k.$$

h_a is a norm on d_a and (d_a, h_a) is complete.

We classify the d_a spaces and compare them with l_1 and m. Some of the d_a spaces are shown to have a semishrinking basis that is not shrinking. Further investigation of the bases in these spaces yields theorems concerning the conjugate space properties of d_a. We characterize the sequences β such that, given α, $d_\beta = d_a$. A class of manifolds in the first conjugate space of d_a is examined. We establish some properties of the collection of points in the first conjugate space of a normed linear space S that attain their maximum on the unit ball in S. The effect of renorming c_0 and l_1 with h_a and related norms is studied in terms of the change induced on this collection of functionals.

Introduction. The d_a spaces were studied by W. L. C. Sargent [6] in 1960 and more recently by W. Ruckle [5] and D. J. H. Garling [2]. Some of the results in §§I and III appear in one or more of the above papers, as will be indicated.

Throughout this paper if S is a linear space and g is a norm on S then (S, g) will denote S with the norm g. The symbol $(S, g)^*$ denotes the first conjugate space of (S, g) and g^* denotes the conjugate norm on $(S, g)^*$ induced by g. If H is a subset of S then $L(H)$ denotes the linear span of H. The symbol $N(S)$ denotes the origin in S and $U(S, g)$ denotes the unit ball in (S, g). The term basis will refer to a Schauder basis.

I. d_a spaces.

Definition 1.1. Suppose n is a positive integer. Then x^n_α denotes the number sequence (x_1, x_2, \ldots) such that $x_i = 1$ if $i \leq n$ and $x_i = 0$ otherwise.

Definition 1.2. Suppose $\alpha \in m$. Then $B(\alpha)$ denotes the number sequence $(B_1(\alpha), B_2(\alpha), \ldots)$ defined as follows: for each i,

$$B_i(\alpha) = h_a(x^n_\alpha) \quad \text{if } i = 1,$$

$$= h_a(x^n_\alpha) - h_a(x^{n-1}_\alpha) \quad \text{if } i > 1.$$
Definition 1.3. Z denotes the number sequence collection to which the sequence $a = (a_1, a_2, \ldots)$ belongs if and only if a is nonincreasing, $a_1 > 0$ and for each i, $a_i \geq 0$. $Z_0 = c_0 \cap Z$ and $Z_1 = l_1 \cap Z$.

The following lemma was found to be very useful in the investigation of the d_a spaces.

Lemma 1.1. Suppose $a \in m$. Then $B(a) \in Z$ and $d_a = d_{B(a)}$. Moreover if $x \in d_a$ then $h_a(x) = h_{B(a)}(x)$.

Thus in the investigation of these spaces we need only consider the sequences in Z.

Theorem 1.1 [2]. $d_a = m$ if and only if $a \in l_1$.

Theorem 1.2 [2]. $d_a = l_1$ if and only if $a \in m - c_0$.

Thus the spaces fall naturally into three categories, (1) those that are l_1, (2) those that are m and (3) those that are “between” l_1 and m.

Observation. If $d_a = m$ then h_a is equivalent to the ordinary norm $\| \cdot \|_m$ on m, and if $d_a = l_1$ then h_a is equivalent to the ordinary norm $\| \cdot \|_1$ on l_1.

Definition 1.4. $e = e_1, e_2, \ldots$ denotes the point sequence in m such that for each i, $e_i = (e_1^i, e_2^i, \ldots)$, $e_1^i = 1$ and $e_j^i = 0$ if $i \neq j$. If e is a basis for a normed linear space (S, g) then $b = b_1, b_2, \ldots$ denotes the point sequence in $(S, g)^*$ that is biorthogonal to e. G_e denotes the closure of the linear span of b. If e is a basis for (S, g) and $f \in (S, g)^*$ then the number sequence (f_1, f_2, \ldots) is defined by $f_i = f(e_i)$ for each i.

Definition 1.5. T_1 denotes the linear transformation from $(l_1, \| \cdot \|_1)^*$ to m defined by $T_1(f) = (f_1, f_2, \ldots)$ for each $f \in (l_1, \| \cdot \|_1)^*$.

It is well known that T_1 is a congruence (isometry) from $[(l_1, \| \cdot \|_1)^*, \| \cdot \|_1^*]$ to $(m, \| \cdot \|_m)$. The following theorem shows that this relationship between l_1 and m does not necessarily exist between the d_a spaces that are l_1 and those that are m.

Theorem 1.3. Suppose $a \in Z_1$. Then each two of the following statements are equivalent.

1. There exists a point $\beta \in Z - Z_0$ such that T_1 is a congruence from $[(d_\beta, h)^*, h_\beta^*]$ to (d_a, h_a).
2. $a_2 = 0$.
3. There exists a number c such that if $x \in d_a$ then $h_a(x) = c \cdot |x|_m$.

Proof. Suppose $\beta \in Z - Z_0$. $d_a = m$ and $d_\beta = l_1$ and h_β is equivalent to $\| \cdot \|_m$ and h_β is equivalent to $\| \cdot \|_1$. Hence $(d_\beta, h_\beta)^* = (l_1, \| \cdot \|_1)^*$ and T_1 is a reversible linear transformation from $[(d_\beta, h_\beta)^*, h^*]$ onto (d_a, h_a). Now suppose T_1 is a congruence. Suppose further that for each positive integer n, $f^n = T_1^{-1}(\beta_1, \beta_2, \ldots, \beta_n, 0, 0, \ldots)$. Since T_1 is a congruence $h_a(T_1(f^n)) = h_\beta^*(f^n)$. But $h_\beta^*(f^n) = 1$ so $h_a(T_1(f^n)) = \beta_1 a_1 = 1$. Thus $\beta_1 = 1/\alpha_1$ and $h_a(T_1(f^2)) = \beta_1 a_1 + \beta_2 a_2 = 1$. Since $\beta_2 \neq 0$ then $a_2 = 0$ and (1) implies (2).
Suppose now that $a_2 = 0$ and $f = (f_1, f_2, \ldots) \in d_a$. Then $h_a(f) = a_1 \cdot |f|_m$. So (2) implies (3).

Now suppose (3). $e_1 \in d_a$ and $h_a(e_1) = a_1 - c \cdot |e|_m = c$. So $a_1 = c$. Let $\beta = (\beta_1, \beta_2, \ldots)$ such that for each i, $\beta_i = 1/\alpha_i$. Then $\beta \in Z - Z_0$, $d_{\beta} = l_{1}$ and if $x \in d_{\beta}$ then $h_{\beta}(x) = (1/\alpha_i) |x|_1$. So T_1 is a congruence.

II. Bases in the d_a spaces. The following are some of the properties that a point sequence p_1, p_2, \ldots may have and are listed here for easy reference.

Definition 2.1. Suppose (S, g) is a normed linear space, W is the set of positive integers and Q is the collection of all finite subsets of W. Suppose further that $p = p_1, p_2, \ldots$ is a sequence each term of which is a point of S.

(i) p is orthogonal means that if each of H and K is in Q, $H \leq K$ and a_1, a_2, \ldots is a number sequence, then $g(\sum_{i \in H} a_ip_i) \leq g(\sum_{i \in K} a_ip_i)$.

(ii) p is strictly orthogonal means that p is orthogonal and if each of H and K is in Q, and $H \neq K$ and a_1, a_2, \ldots is a number sequence, then the following two statements are equivalent.

1. $g(\sum_{i \in H} a_ip_i) = g(\sum_{i \in K} a_ip_i)$.

2. $H = K$ or $H \neq K$ and if $i \in K - H$ then $a_i = 0$.

(iii) p is strictly coorthogonal means that if each of H and K is in Q, and $H \leq K$, and a_1, a_2, \ldots is a number sequence then

\[g\left(\sum_{i \in W - K} a_ip_i \right) \leq g\left(\sum_{i \in W - H} a_ip_i \right) \]

and the following two statements are equivalent.

1. $g(\sum_{i \in W - K} a_ip_i) = g(\sum_{i \in W - H} a_ip_i)$.

2. $H = K$, or $H \neq K$ and if $i \in K - H$ then $a_i = 0$.

(iv) If p is a basis, p is unconditional means that if $x \in S$ and $x = \sum_{i = 1}^{\infty} x_ip_i$ and if $r \in Q$, then $x = \sum_{i = 1}^{\infty} x_i p_i(r(i))$.

(v) If p is a basis, p is semishrinking means that there exists a number $c > 0$ such that

1. $0 < \text{glb}_i (g(p_i)) \leq \text{lub}_i (g(p_i)) < c$, and

2. if $f \in (S, g)^*$ then $\lim_{n \to \infty} f(p_n) = 0$.

(vi) If p is a basis, p is shrinking means that if $q = q_1, q_2, \ldots$ is the point sequence in $(S, g)^*$ that is biorthogonal to p and y_1, y_2, \ldots is a bounded point sequence in S such that for each j, $\lim_{n \to \infty} q_j(y_n) = 0$, then if $f \in (S, g)^*$, $\lim_{n \to \infty} f(y_n) = 0$.

Theorem 2.1. Suppose $\alpha \in Z - Z_1$. Then the point sequence $e = e_1, e_2, \ldots$ in (d_a, h_a) has the following properties:

1. e is orthogonal;

2. e is strictly orthogonal;

3. e is strictly coorthogonal;

4. e is a basis;

5. e is unconditional;

6. e is boundedly complete.
That e is orthogonal, strictly orthogonal, and strictly coorthogonal is easily verified. Garling [2] has shown that the linear span of e, $L(e)$, is dense in d_α and so it follows that since for each i, $e_i \notin N(d_\alpha)$ and since e is orthogonal, that e is an unconditional basis for d_α. That e is boundedly complete is obvious.

It may be noted that the collection of d_α spaces can be enlarged as follows: if $\alpha=(\alpha_1, \alpha_2, \ldots)$ is a bounded number sequence and $\alpha_i \neq 0$ for some i and if $k \geq 1$, then $d_{\alpha,k}$ denotes the set to which the number sequence $x=(x_1, x_2, \ldots)$ belongs only in the case that there exists a number c such that

$$h_{\alpha,k}(x) = \operatorname{lub}_{p \in \mathcal{P}} \left[\sum_{i=1}^{\infty} |x_{p(i)}a_i|^k \right]^{1/k} < c.$$

In this case, results similar to Lemma 1.1, Theorem 1.1, Theorem 1.2 and Theorem 2.1 may still be obtained. Theorem 1.1 becomes $d_{\alpha,k}=m$ if and only if $\alpha \in l_k$. Theorem 1.2 becomes $d_{\alpha,k}=l_k$ if and only if $\alpha \in m-c_0$. Again, if $d_{\alpha,k}=m$ then $h_{\alpha,k}$ is equivalent to $| \cdot |_m$ and if $d_{\alpha,k}=l_k$ then $h_{\alpha,k}$ is equivalent to the ordinary norm on l_k, $| \cdot |_l$.

Here then, we have spaces some of which are l_k, some m and some "between" l_k and m. The remainder of this paper deals with the d_α (i.e. $d_{\alpha,1}$) spaces.

A. Pelczyński and W. Słonek [3], answering a question of I. Singer, constructed an example of a normed linear space with a basis that was semishrinking but not shrinking. J. R. Retherford [4] has shown that the space (d), which is d_α with $\alpha_i=1/i$, also has a basis that is semishrinking but not shrinking.

THEOREM 2.2. Suppose that $\alpha \in Z_0-Z_1$. Then the basis e for (d_α, h_α) is semishrinking but not shrinking.

Proof. If $\alpha \in Z_0-Z_1$ then there exists a point $x=(x_1, x_2, \ldots)$ in d_α such that for each i, $x_i \leq x_{i+1} \geq 0$ and $x \notin l_1$. Suppose $f \in (d_\alpha, h_\alpha)^*$ and that $\lim_{i \to \infty} f_i \neq 0$. Then there exists a number $c>0$ and a subsequence f_{n_1}, f_{n_2}, \ldots of f_1, f_2, \ldots such that for each i, $|f_{n_i}| \geq c$. Let $y=(y_1, y_2, \ldots)$ be the point of d_α such that $y_i=0$ if $i \neq n_j$ for every j and $y_i=x_i$, $|f_{n_j}|/f_{n_j}$ if $i=n_j$ for some j. So if N is a number there exists an integer s such that

$$N < c \sum_{i=1}^{s} x_i \leq \sum_{i=1}^{s} |f_{n_i}|x_i = \sum_{i=1}^{n} f_iy_i.$$

So $f \notin (d_\alpha, h_\alpha)^*$ and we have a contradiction. Hence $\lim_{i \to \infty} f_i=0$. For each i, $h_\alpha(e_i)=\alpha_i$ so e is semishrinking.

For each positive integer n, let $S_n=\sum_{i=1}^{n} \alpha_i$ and $y_n=(1/S_n) \cdot \sum_{i=1}^{n} e_i$. Then $h_\alpha(y_n)$ = 1. Let F denote the point of $(d_\alpha, h_\alpha)^*$ defined as follows: if $x \in d_\alpha$ and $x=(x_1, x_2, \ldots)$, then $F(x)=\sum_{i=1}^{\infty} x_i \alpha_i$. For each n, $F(y_n)=1$. But if $b=b_1, b_2, \ldots$ is the point sequence in $(d_\alpha, h_\alpha)^*$ biorthogonal to e and if j is a positive integer then $\lim_{n \to \infty} b_j(y_n)=0$. So e is not shrinking.

COROLLARY 2.1. Suppose $\alpha \in Z$. Then $[(d_\alpha, h_\alpha)^*, h_\alpha^*]$ is not separable.
Proof. It is well known, for instance [1, p. 77], that if \(p = p_1, p_2, \ldots \) is an unconditional basis for a normed linear complete space \((S, g)\) then \(p \) is shrinking if and only if \([(S, g)^*, g^*] \) is separable. Thus if \(\alpha \in Z - Z_1 \), since \(e \) is an unconditional basis that is not shrinking we have that \([(d_\alpha, h_\alpha)^*, h_\alpha^*] \) is not separable. If \(\alpha \in Z_1 \) then \((d_\alpha, h_\alpha)\) is isomorphic to \((m, |\cdot|_m)\) and thus \([(d_\alpha, h_\alpha)^*, h_\alpha^*] \) is not separable.

Definition 2.2. Suppose \((S, g)\) is a normed linear space and that \(H \) is a linear manifold in \((S, g)^*\). \(J^H \) denotes the transformation from \(S \) into \((H, g^*)^*\) defined as follows: if \(x \in S \) and \(f \in H \) then \([J^H(x)](f) = f(x) \).

Theorem 2.3. Suppose \(\alpha \in Z - Z_1 \). Then \(J^{G_\alpha} \) is a congruence.

Proof. \((d_\alpha, h_\alpha)\) is complete and \(e \) is an unconditional basis for \((d_\alpha, h_\alpha)\) that is boundedly complete. Thus it follows from a result of Singer [7] that \(J^{G_\alpha} \) is a congruence.

Theorem 2.4. Suppose \(\alpha \in Z - Z_1 \) and \(b \) is the point sequence in \((d_\alpha, h_\alpha)^* \) biorthogonal to \(e \). Then \(b \) is

1. orthogonal,
2. a basis for \((G_\alpha, h_\alpha^*)\),
3. unconditional,
4. not boundedly complete,
5. not strictly orthogonal.

Proof. Since \(e \) is orthogonal \(b \) must be orthogonal and since \(b \) is orthogonal and \(L(b) \) is dense in \(G_\alpha \) and since \(b_i \neq N(d_\alpha, h_\alpha)^* \) for each \(i \), it follows that \(b \) is an unconditional basis for \(G_\alpha \). Since \([(d_\alpha, h_\alpha)^*, h_\alpha^*] \) is not separable there exists a point \(y \in (d_\alpha, h_\alpha)^* - G_\alpha \). Suppose \(h_\alpha^*(y) = c \). Suppose further that \(n \) is a positive integer and \(y^n = \sum_{i=1}^{n} y_i b_i \). Then \(h_\alpha^*(y^n) \leq c \). But \(y \notin G_\alpha \) so \(b \) is not boundedly complete. Suppose \(n \) is a positive integer and \(\alpha^n = \sum_{i=1}^{n} \alpha_i b_i \). Let \(x = (1/\alpha) e_1 \). Then \(x \in U(d_\alpha, h_\alpha) \) and \(\alpha^n(x) = 1 \). Suppose \(y = (y_1, y_2, \ldots) \) is a point of \(U(d_\alpha, h_\alpha) \). Then \(|\alpha^n(y)| = |\sum_{i=1}^{n} y_i | \leq h_\alpha(y) = 1 \). So \(h_\alpha^*(\alpha^n) = 1 \). Hence \(b \) is not strictly orthogonal.

Corollary 2.2. Suppose \(\alpha \in Z - Z_1 \) and \((S, g)\) is a normed linear complete space. Then \((G_\alpha, h_\alpha^*)\) is not isomorphic to \([(S, g)^*, g^*]\).

Proof. Singer has shown [7] that a normed linear complete space \((S, g)\) with an unconditional basis, \(p \), is isomorphic to the conjugate space of some normed linear space if and only if \(p \) is boundedly complete. Thus Corollary 2.2 follows.

Corollary 2.3. If \(\alpha \in Z \) then \((d_\alpha, h_\alpha)\) is not reflexive.

In case \(\alpha \in Z_1 \) the question whether or not \((d_\alpha, h_\alpha)\) is congruent to the conjugate space of some normed linear space is answered by the following theorem.

Theorem 2.5. Suppose \(\alpha \in Z_1 \) and \(g_\alpha \) is the norm on \(l_1 \) defined as follows: if \(x \in l_1 \) and \(x = (x_1, x_2, \ldots) \) then

\[
g_\alpha(x) = \text{lub} \left\{ \left| \sum_{i=1}^{\alpha} y_i x_i \right| \mid y \in U(d_\alpha, h_\alpha), y = (y_1, y_2, \ldots) \right\}.
\]
Then each of the following statements is true.
(1) \([C_0, h_a]*, h_a^*\) is congruent to \((l_1, g_a)\);
(2) \(g_a\) is equivalent to \(|\cdot|_1\);
(3) \([l_1, g_a]*, g_a^*\) is congruent to \((d_a, h_a)\);
(4) \([[(C_0, h_a)*, h_a^*], h_a^*\] is congruent to \((d_a, h_a)\).

III. \(d_a = d_\beta\). W. J. Davis, in a private communication, has characterized the extreme points of \(U(d_a, h_a)\) in the case \(a \in Z_0 - Z_1\).

Theorem 3.1 (Davis). Suppose \(\alpha \in Z_0 - Z_1, x \in d_a, x = (x_1, x_2, \ldots)\) and \(h_a(x) = 1\). Then (1) implies (2).
(1) \(x\) is an extreme point.
(2) There exists an integer \(n\) such that if \(i > n\) then \(x_1 = 0\) and if \(x_1 = 0\) and \(x_k \neq 0\) then \(|x_j| = |x_k|\).

This gives us the following result of Garling.

Theorem 3.2 [2]. Suppose \(\alpha \in Z_0 - Z_1, f \in (d_a, h_a)*\) and \(r \in R\). Suppose further that for each \(i, |f_{r(i)}| \geq |f_{r(i+1)}|\). Then

\[
h_a^*(f) = \max_{i=1}^n \frac{|f_{r(i)}|}{\sum_{i=1}^n a_i}.
\]

Garling has also characterized \(G_e\).

Theorem 3.3 [2]. Suppose \(\alpha \in Z_0 - Z_1, f \in (d_a, h_a)*\) and \(r \in R\). Suppose further that for each \(i, |f_{r(i)}| \geq |f_{r(i+1)}|\). Then \(f \in G_e\) if and only if

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^n |f_{r(i)}|}{\sum_{i=1}^n a_i} = 0.
\]

Theorem 3.4 [5]. Suppose each of \(\alpha\) and \(\beta\) is in \(Z\) and for each positive integer \(S(\alpha, n) = \sum_{i=1}^n a_i\). Then \(d_a = d_\beta\) if and only if there exists a number \(k_1\) and a number \(k_2\) such that if \(n\) is a positive integer then \(S(\alpha, n) \leq k_1 S(\beta, n)\) and \(S(\beta, n) \leq k_2 S(\alpha, n)\).

Observation. Whenever \(d_a = d_\beta\) then \(h_a\) is equivalent to \(h_\beta\).

Theorem 3.5. Suppose \(\alpha \in Z - Z_1\) and \(f \in (d_a, h_a)*\). Suppose further that \(\beta = (f_1, f_2, \ldots)\). Then each two of the following statements are equivalent.
(1) \(d_a = d_\beta\);
(2) \(f \in (d_a, h_a)* - G_e\);
(3) if \(F \in (d_a, h_a)*\) such that for each \(i, F_i = a_i\) then \(F \in (d_\beta, h_\beta)*\).

IV. A collection of manifolds in \((d_a, h_a)*\).

Definition 4.1. Suppose \((S, g)\) is a normed linear space and \(H\) is a linear manifold in \((S, g)*\). The statement that \(H\) is absolutely total means that if \(x \in S\) then

\[
g(x) = \max \{|f(x)| \mid f \in H \text{ and } g^*(f) = 1\}.
\]
Definition 4.2. The statement that a normed linear space \((S, g)\) has property \(t\) means that if \(H\) is an absolutely total linear manifold in \((S, g)^*\) then \(H\) is dense in \([S, g]^*, g^*\).

B. E. Wilder has shown [8] that each of \((c_0, |\cdot|_0)\) and \((c, |\cdot|_c)\), where \(|\cdot|_0\) and \(|\cdot|_c\) are the ordinary norms on \(c_0\) and \(c\) respectively, is a nonreflexive space with property \(t\). He has also shown that \((c_{0,1}, |\cdot|_{0,1})\), where \(|\cdot|_{0,1}\) is the ordinary max. norm on \(c_{0,1}\), does not have property \(t\). It has been conjectured that the only nonreflexive spaces that have property \(t\) are isomorphic to \((c_0, |\cdot|_0)\). The following theorem settles this conjecture in the negative.

Theorem 4.1. Suppose \(\alpha \in Z - Z_1\) and there exists a number \(M\) such that if \(i\) is a positive integer \(\alpha_i < (M+1)\alpha_{i+1}\). Then \((G_e, h^*_a)\) has property \(t\).

Proof. Suppose for convenience that \(\alpha = 1\). \(J^G_e\) is a congruence from \((d_a, h_a)\) to \([G_e, h_a^*], h_a^{**}\). Let \(T\) denote the inverse of \(J^G_e\). Suppose that \(L\) is an absolutely total linear manifold in \((G_e, h^*_a)^*\), and that \(n\) is a positive integer. Then \(b_n \in G_e\) and if \(\epsilon > 0\) there exists a point \(f \in L\) such that \(h_a^{**}(f) \leq 1\) and \(|h_a^*(b_n) - f(b_n)| < \epsilon/(M+2)\).

Suppose \(T(f) = (f_1, f_2, \ldots)\). Then since \(h_a^*(b_n) = 1/\alpha_1 = 1\) and \(f(b_n) = b_n(T(f)) = f_n\), we have that \(|1-f_n| < \epsilon/(M+2)\). \(h_a^{**}(f) = h_a(\sum_{i=1}^{\alpha} f_i b_i) \leq 1\), so \(|f_n| \leq 1\) and \(1 - |f_n| \leq 1 - f_n = |1 - f_n| < \epsilon/(M+2)\). Pick \(r \in \mathcal{D}\) such that \(r(1) = n\) and if \(i \geq 2\), \(|f_{r(i)}| \geq |f_{r(i+1)}|\). For each \(i\), let \(F_i = f_{r(i)}\). Then

\[
|F_1| \cdot \alpha_1 + \sum_{i=2}^{\infty} |F_i| \alpha_i = \sum_{i=1}^\infty |F_i| \alpha_i \leq h_a^{**}(f) \leq 1.
\]

So

\[
\sum_{i=1}^\infty |F_i| \alpha_i \leq 1 - |f_n| < \frac{\epsilon}{(M+2)}.
\]

Let \(x\) and \(y\) be points of \(d_a\) defined by \(x = (1-f_n) \cdot e_n\) and \(y = f_n e_n - \sum_{i=1}^{\infty} f_i e_i\). Suppose \(p = p_1, p_2, \ldots\) is the point sequence in \((G_e, h_a^*)\) that is biorthogonal to \(b\). Then if \(i\) is a positive integer, \(T(p_i) = e_i\). So

\[
h_a^{**}(p_n-f) = h_a(e_n - \sum_{i=1}^{\infty} f_i e_i) = h_a(x+y) = h_a(x) + h_a(y)
\]

\[
= 1 - f_n + h_a(y) < \frac{\epsilon}{(M+2)} + h_a(y).
\]

Now

\[
h_a(y) = \sum_{i=1}^{\infty} |F_{i+1}| \alpha_i = \sum_{i=1}^{\infty} |F_{i+1}| \alpha_{i+1} + \sum_{i=1}^{\infty} |F_{i+1}| \cdot |\alpha_i - \alpha_{i+1}|
\]

\[
< \frac{\epsilon}{(M+2)} + M \sum_{i=1}^{\infty} |F_{i+1}| \cdot |\alpha_{i+1}| < \frac{\epsilon}{(M+2)} + \frac{Me}{(M+2)} = \frac{\epsilon(M+1)}{(M+2)}.
\]

So

\[
h_a^{**}(p_n-f) = h_a(e_n - \sum_{i=1}^{\infty} f_i e_i) < \frac{\epsilon}{(M+2)} + \frac{\epsilon(M+1)}{(M+2)} = \epsilon.
\]

Hence \(p_n\) is a point or a limit point of \(L\).
Suppose s is a positive integer and each of c_1, c_2, \ldots, c_s is a number. Suppose further that $x = c_1 p_1 + \cdots + c_s p_n$ and for each j, $1 \leq j \leq s$, let y_1, y_2, \ldots be a point sequence in L converging to p_j. If $e > 0$ and if $j \leq s$ is a positive integer such that $c_j \neq 0$, then there exists a number n_j such that if $i > n_j$ then $|y_j - p_j| < e/(|c_j| \cdot s)$. For each positive integer j, $j \leq s$, let $y_j = c_1 y_1 + \cdots + c_s y_s$. Then $y_j \in L$. Let $N = \max \{n_j\}$. Then if $i > N$,

$$h^\ast\ast(x - y_i) = |c_1| \cdot h^\ast\ast(p_1 - y_i) + \cdots + |c_s| \cdot h^\ast\ast(p_s - y_i) < e.$$

So x is a point or a limit point of L. Hence any point in $L(p)$ is a point or limit point of L and thus the closure of L contains $L(p)$. $L(e)$ is dense in (d_e, h_e) and J^G_e maps $L(e)$ onto $L(p)$ so $L(p)$ is dense in $[(G_e, h_e^\ast)^*, h_e^\ast\ast]$. Thus L is dense in $[(G_e, h_e^\ast)^*, h_e^\ast\ast]$.

Every α in $Z - Z_0$ has the property that there is a number M such that $\alpha_i < (M+1)\alpha_{i+1}$ for each i. Some of the sequences in $Z_0 - Z_1$ have this property, for example $\alpha = (1, 1/2, \ldots, 1/i, \ldots)$, while some other sequences in $Z_0 - Z_1$ do not. If $\alpha \in Z_0 - Z_1$ then (d_α, h_α) is not isomorphic to $(l_1, |\cdot|_1)$ and thus (G_e, h_e^\ast) is not isomorphic to $(c_0, |\cdot|_0)$. Thus we have the following corollary.

Corollary 4.1. There exists a nonreflexive normed linear space (S, g) that has property t but is not isomorphic to $(c_0, |\cdot|_0)$.

Conjecture. If $\alpha \in Z_0 - Z_1$ then (G_e, h_e^\ast) has property t.

V. Regular functionals.

Definition 5.1. Suppose (S, g) is a normed linear space and $f \in (S, g)^\ast$. The statement that f is regular on (S, g) means that there exists a point $x \in S$ such that $g(x) = 1$ and $f(x) = g^\ast(f)$.

$R(S, g)$ denotes the subset of $(S, g)^\ast$ to which the point f belongs only in the case that f is regular on (S, g).

Theorem 5.1. Suppose that (S, g) is a normed linear space and that $p = p_1, p_2, \ldots$ is a monotone basis for (S, g). Suppose further that $q = q_1, q_2, \ldots$ is the point sequence in $(S, g)^\ast$ that is biorthogonal to p. If $f \in L(q)$ then $f \in R(S, g)$.

Proof. Suppose $x \in S$ and $x = \sum_{i=1}^n x_i p_i$. If n is a positive integer let \bar{x}^n be the point of E_n defined by $\bar{x}^n = (x_1, x_2, \ldots, x_n)$. Let g_n denote the norm on E_n defined by $g(\bar{x}^n) = g(\sum_{i=1}^n x_i p_i)$. Suppose $y \in L(q)$ and $y = y_1 q_1 + \cdots + y_n q_n$. Then if $x \in S$ and $x = \sum_{i=1}^n x_i p_i$, $y(x) = \sum_{i=1}^n y_i x_i$. Let y' be the point of $[(E_n, g_n)^\ast, g_n^\ast]$ defined as follows: if $x \in E_n$ and $x = (x_1, x_2, \ldots, x_n)$ then $y'(x) = \sum_{i=1}^n y_i x_i$. y' is regular so there exists a point $z = (z_1, z_2, \ldots, z_n)$ in E_n such that $g_n(z) = 1$ and $y'(z) = g_n^\ast(y')$. Examine the point x of S defined by $x = \sum_{i=1}^n z_i p_i$, $g(x) = g_n(z) = 1$ and $y(x) = \sum_{i=1}^n y_i z_i = g_n^\ast(y')$. Now suppose $r = \sum_{i=1}^n r_i p_i$ and $g(r) = 1$. Then $g_n(\bar{r}^n) \leq 1$ and

$$|y(r)| = |\sum_{i=1}^n y_i r_i| = |y'(\bar{r}^n)| \leq g_n^\ast(y').$$

So $g^\ast(y) = g_n^\ast(y')$ and $y \in R(S, g)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 5.1. Suppose \((S, g)\) is a normed linear complete space, \(p=p_1, p_2, \ldots\) is a basis for \((S, g)\) and \(q=q_1, q_2, \ldots\) is the point sequence in \((S, g)^*\) that is biorthogonal to \(p\). Then there exists a norm \(h\) on \(S\) such that \(h\) is equivalent to \(g\) and \(L(q) \subseteq R(S, h)\).

Proof. It is well known [1, p. 67] that there exists a norm \(h\) on \(S\) equivalent to \(g\) such that \(p\) is monotone in \((S, h)\). Hence, by Theorem 5.1, \(L(q) \subseteq R(S, h)\).

Theorem 5.2. Suppose \(e \in \mathbb{Z} - \mathbb{Z}_0\), \(e\) is the ordinary basis for \((d_{a}, h_{a})\) and \(f \in (G_{e}, h_{e,*})^*\). Suppose further that \(p=p_1, p_2, \ldots\) is the point sequence in \((G_{e}, h_{e,*})^*\) that is biorthogonal to the basis \(b\) in \((G_{e}, h_{e,*})\). Then \(L(p) = R(G_{e}, h_{e,*})\).

Proof. Since \(b\) is an orthogonal basis for \((G_{e}, h_{e,*})\) then, by Theorem 5.1, \(L(p) = R(G_{e}, h_{e,*})\). Suppose \(f \in (G_{e}, h_{e,*})^* - L(p)\). \(J^0_e\) is a congruence from \((d_{a}, h_{a})\) to \(((G_{e}, h_{e,*})^*, h_{e,**})\) and for each \(i\), \(J^0_e(e) = p_i\). Thus if \(T\) denotes the inverse of \(J^0_e\) and \(T(f) = (f_1, f_2, \ldots)\), then \(T(f) \in (G_{e}, h_{e,*})\). Pick \(r \in \mathbb{R}\) such that for each \(i\), \(|f_{r+1}(i)| \geq |f_{r}(i)|\) and let \(F_i = |f_{r}(i)|\). Suppose \(n\) is a positive integer and \(\alpha^n = \sum_{i=1}^{n} \alpha_i b_i\). Then if \(T(F) = (F_1, F_2, \ldots)\),

\[
F(\alpha^n) = \sum_{i=1}^{n} F_i \alpha_i < \sum_{i=1}^{n+1} F_i \alpha_i = F(\alpha^{n+1}).
\]

Suppose \(y \in U(G_{e}, h_{e,*})\). Then \(\lim_{i \to \infty} y_i = 0\). Pick \(s \in \mathbb{R}\) such that for each \(i\), \(|y_{s+i}| \geq |y_{s+1}|\) and let \(Y_i = |y_{s+1}|\). Let \(Y = \sum_{i=1}^{s} Y_i b_i\) and \(c_1 = \text{glb} \alpha_i\). Since \(\lim_{i \to \infty} y_i = 0\) there exists a number \(n_1\) such that if \(i > n_1\) then \(Y_i < c_1\). Let \(c_2 = \sum_{i=1}^{n_1} F_i (\alpha_i - Y_i)\). Suppose \(c_2 < 0\). Then \(\sum_{i=1}^{n_1} F_i \alpha_i < \sum_{i=1}^{n_1} F_i Y_i\). There exists a number \(t > 0\) such that the point \(z\) of \((d_{a}, h_{a})\) defined by \(z = \sum_{i=1}^{n_1} t \cdot F_i b_i\) has norm 1. So

\[
t \sum_{i=1}^{n_1} F_i \alpha_i = 1 < t \cdot \sum_{i=1}^{n_1} F_i Y_i = Y(z).
\]

So \(h_{e,*}(Y) > 1\). But \(h_{e,*}(y) = h_{e,*}(y) = 1\) so \(c_2 \geq 0\), and

\[
\sum_{i=1}^{n_1+1} F_i (\alpha_i - Y_i) = c_3 > c_2 \geq 0.
\]

Let \(n_2\) be a positive integer such that \(\sum_{i=1}^{n_2+1} F_i Y_i < c_3/2\). Suppose \(N = \max \{n_1 + 1, n_2\}\). Then if \(n > N\),

\[
F(\alpha^n) = F(Y) = \sum_{i=1}^{n} F_i (\alpha_i - Y_i) - \sum_{i=n+1}^{\infty} F_i Y_i > c_3 - c_3/2 = c_3/2 > 0.
\]

So \(F(\alpha^n) > F(Y)\). \(F(Y) \geq F(Y)\) and so \(F\) is not regular and \(f\) is not regular. Hence \(R(G_{e}, h_{e,*}) = L(e)\) and the theorem is proved.

It may be noted that if we define the norm \(h_{a,0}\) on \(c_0\) by \(h_{a,0}(x) = h_{e,*}(T_1^{-1}(x))\) for each \(x \in c_0\), then \(T_1\) restricted to \(G_{e}\) is a congruence from \((G_{e}, h_{e,*})\) to \((c_0, h_{a,0})\) that maps the basis \(b\) in \((G_{e}, h_{e,*})\) onto the basis \(e\) in \((c_0, h_{a,0})\). Thus Theorem 4.2 gives us, in case \(\alpha_1 = 1\) and \(\alpha_2 = 0\), the usual characterization of \(R(c_0, | \cdot |_0)\).
Theorem 5.3. Suppose that \(\alpha \in Z_1 \) and \(e \) is the ordinary basis for \((c_0, h_a)\). Then \(L(b) = R(c_0, h_a) \) if and only if \(\alpha_2 = 0 \).

Proof. If \(\alpha_2 = 0 \) then \((c_0, h_a)\) is congruent to \((c_0, \|\cdot\|_0)\) and \(h_a = \alpha_1 \cdot \|\cdot\|_0 \). So \(R(c_0, h_a) = R(c_0, \|\cdot\|_0) \). But \(R(c_0, \|\cdot\|_0) = L(b) \) so \(R(c_0, h_a) = L(b) \). Suppose \(\alpha_2 \neq 0 \). If \(\alpha' = \sum_{i=1}^{n} \alpha_i b_i \), then \(h_a^*(\alpha') = 1 \). Suppose \(\alpha' \notin L(b) \) and \(y = (y_1, y_2, \ldots) \) is the point of \(U(c_0, h_a) \) defined as follows: \(y_1 = 1/\alpha_1 \) and \(y_i = 0 \) if \(i > 1 \). Then \(\alpha'(y) = 1 \) so \(\alpha' \in R(c_0, h_a) \) and \(L(b) \neq R(c_0, h_a) \). Suppose now that \(\alpha' \in L(b) \). Then there exists an integer \(n \) such that \(\alpha_n
eq 0 \) and \(\alpha_{n+1} = 0 \). Let \(f \) be the point of \((c_0, h_a)^* \) defined as follows:

\[
 f_i = \alpha_i \quad \text{if } 1 \leq i \leq n-1 \quad \text{and} \quad f_i = \frac{\alpha_n}{i-n+1} \quad \text{if } i \geq n.
\]

Then \(f \notin L(b) \) and it can be shown that \(f \) is regular on \((c_0, h_a)\). Hence \(L(b) \neq R(c_0, h_a) \), and the theorem is proved.

Definition 5.2. Suppose \(g \) is a norm on \(l_1 \). The statement that \(g \) has property \(r \) means that

1. \(g \) is equivalent to \(\|\cdot\|_1 \); and
2. if \(x = (x_1, x_2, \ldots) \) is a point in \(l_1 \) and \(s \in \mathcal{P} \) and if \(y = (y_1, y_2, \ldots) \) is the point in \(l_1 \) such that for each \(i, y_i = |x_{i+s}| \), then \(g(y) = g(x) \).

Theorem 5.4. Suppose that \(g \) is a norm on \(l_1 \) and \(g \) has property \(r \). Suppose that \(f \in (l_1, g)^* \) and that if \(j \) is a positive integer then \(|f_j| < \text{lub}_{i} |f_i| \). Then \(f \notin R(l_1, g) \).

This result is well known in case \(g = \|\cdot\|_1 \) and a proof may be constructed similar to the proof of that case.

Theorem 5.5. Suppose that \(\alpha \in Z - Z_0 \). Then only one of the following statements is true.

1. For each positive integer \(i, \alpha_i = \alpha_1 \).
2. \(R(d_a, h_a) \) is a proper subset of \(R(l_1, \|\cdot\|_1) \).

Proof. Suppose (1) is true. Then the transformation \(T \) from \((d_a, h_a)\) to \((l_1, \|\cdot\|_1)\) defined by \(T(x) = \alpha_1 x \), for each \(x \in d_a \), is a congruence and \(R(d_a, h_a) = R(l_1, \|\cdot\|_1) \). So (2) is not true. It is well known that \(f \in (l_1, \|\cdot\|_1)^* \) then \(f \notin R(l_1, \|\cdot\|_1) \) if and only if for each positive integer \(j, |f_j| < \text{lub}_{i} |f_i| \). Therefore, since \(h_a \) has property \(r \), \(R(d_a, h_a) \subseteq R(l_1, \|\cdot\|_1) \). Suppose (1) is not true. Let \(n \) be the least integer such that \(\alpha_n > \alpha_{n+1} \). Let \(f \) be the point of \((d_a, h_a)^* \) defined as follows:

\[
 f_i = 1 \quad \text{if } 1 \leq i \leq n \quad \text{and} \quad f_i = \frac{i-n}{i-n+1} \quad \text{if } i > n; \quad f \in R(l_1, \|\cdot\|_1).
\]

However it can be shown that \(f \) is not in \(R(d_a, h_a) \), so (2) is true.

Thus it is seen that, in case \(\alpha \in Z - Z_0 \), \(R(d_a, h_a) \) is largest when \((d_a, h_a)\) is congruent to \((l_1, \|\cdot\|_1)\).
Definition 5.3. Suppose \((S, g)\) is a normed linear space and \(H\) is a linear manifold in \((S, g)^*\). The statement that \(H\) is maximal regular in \((S, g)^*\) means that

(1) \(H \subseteq \mathcal{R}(S, g)\).

(2) If \(L\) is a linear manifold in \((S, g)^*\) and \(H\) is a proper subset of \(L\), then there exists a point \(f \in L - H\) such that \(f\) is not in \(\mathcal{R}(S, g)\).

Definition 5.4. Suppose that \((S, g)\) is a normed linear space. Then \(Q\) denotes the transformation from \((S, g)\) to \(((S, g)^*, g^*)^*, g^{**}\) defined as follows: if \(x \in S\) and \(f \in (S, g)^*\) then \(Q \circ_x(f) = f(x)\). \(Q(S)\) denotes the image of \(Q\).

Theorem 5.6. Suppose \(g\) is a norm on \(l_1\) and \(g\) has property \(r\). Suppose further that the ordinary basis \(e\) for \((l_1, g)\) is orthogonal. Then \(G_e\) is maximal regular.

Proof. By Theorem 5.1, \(G_e \subseteq \mathcal{R}(l_1, g)\). Suppose \(L\) is a linear manifold in \((l_1, g)^*\) and \(G\) is a proper subset of \(L\). Suppose further that \(f \in L - G_e\) and \(T_1(f) = (f_1, f_2, \ldots)\). Consider the following two cases.

I. Suppose there exists a positive integer \(n\) such that \(F_n = T_1^{-1}(f_{n+1}, f_{n+2}, \ldots)\) is not regular on \((l_1, g)\). In this case let \(y\) be the point of \(G_e\) such that \(y_i = -f_i\) if \(1 \leq i \leq n\) and \(y_i = 0\) if \(i > n\). Then \(y + f \in L\) and \(y + f\) is not regular on \((l_1, g)\).

II. Suppose that for each positive integer \(n\), \(F_n = T_1^{-1}(f_{n+1}, f_{n+2}, \ldots)\) is regular on \((l_1, g)\). Let \(n_1\) denote the least integer such that \(|f_{n_1}| = |T_1(f)|_m\). Let \(n_2\) denote the least integer such that \(n_2 > n_1\) and \(|f_{n_2}| = |T_1(F_{n_2})|_m\). If \(j\) is a positive integer, \(j > 2\), let \(n_j\) denote the least integer such that \(n_j > n_{j-1}\) and \(|f_{n_j}| = |T_1(F_{n_j-1})|_m\). Then \(|f_{n_1}|, |f_{n_2}|, \ldots\) is a nonincreasing subsequence of \(|f_1|, |f_2|, \ldots\) converging to a number \(k > 0\). Let \(f_{n_1}, f_{n_2}, \ldots\) be the subsequence of \(f_1, f_2, \ldots\) to which the number \(f_j\) belongs only in the case that \(|f_j| \geq k\). For each positive integer \(i\), let \(d_i = |f_{n_i}| - k + k/2s\). Define \(y = (y_1, y_2, \ldots)\) as follows:

\[
y_i = \begin{cases} 0 & \text{if } i \neq s, \text{ for every } j, \\
-d_j & \text{if } i = s_j \text{ for some } j \text{ and } f_{s_j} \geq 0, \\
+\delta_j & \text{if } i = s_j \text{ for some } j \text{ and } f_{s_j} < 0.
\end{cases}
\]

It can be shown that \(Y = T_1^{-1}(y)\) is in \(G_e\) so \(Y + f \in L\) and \(Y + f\) is not regular on \((l_1, g)\).

Corollary 5.2. Suppose \(\alpha \in Z_1\). Then \(Q(c_\alpha)\) is maximal regular in \(((c_\alpha, h_\alpha)^*, h_\alpha^*)^*, h_\alpha^{**}].

Corollary 5.3. Suppose \(\alpha \in Z - Z_0\) and \(e\) is the ordinary basis for \((d_\alpha, h_\alpha)\). Then \(Q(G_e)\) is maximal regular in \(((G_e, h_e^*)^*, h_e^{**})^*, h_e^{***}].

Conjecture. Suppose \((S, g)\) is a normed linear space. Then \(Q(S)\) is maximal regular in \(((S, g)^*, g^*)^*, g^{**}].

References

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

AUBURN UNIVERSITY,
AUBURN, ALABAMA 36830

AUBURN UNIVERSITY AT MONTGOMERY,
MONTGOMERY, ALABAMA 36104