Logarithmic convexity, first order differential inequalities and some applications

Author:
Howard Allen Levine

Journal:
Trans. Amer. Math. Soc. **152** (1970), 299-320

MSC:
Primary 35.95

DOI:
https://doi.org/10.1090/S0002-9947-1970-0274988-1

MathSciNet review:
0274988

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let, for be a dense linear subspace of a Hilbert space , and let and be linear operators (possibly unbounded) mapping into . Let . We give sufficient conditions on and in order to insure uniqueness and stability of solutions to

**[1]**S. Agmon,*Unicité et convexité dans les problèmes différentiels*, Sem. Math. Sup. (1965), Univ. of Montreal Press, 1966. MR**0252808 (40:6025)****[2]**S. Agmon and L. Nirenberg,*Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space*, Comm. Pure Appl. Math.**20**(1967), 207-229. MR**34**#4665. MR**0204829 (34:4665)****[3]**P. J. Chen and M. E. Gurtin,*On a theory of heat conduction involving two temperatures*, Z. Angew. Math. Phys.**19**(1968), 614-627.**[4]**B. D. Coleman, R. J. Duffin and V. J. Mizel,*Instability, uniqueness, and nonexistence theorems for the equation on a strip*, Arch. Rational Mech. Anal.**19**(1965), 100-116. MR**31**#1479. MR**0177215 (31:1479)****[5]**F. John,*Continuous dependence on data for solutions of partial differential equations with a prescribed bound*, Comm. Pure Appl. Math.**13**(1960), 551-585. MR**24**#A317. MR**0130456 (24:A317)****[6]**R. J. Knops and L. E. Payne,*On the stability of solutions to the Navier-Stokes equations backward in time*, Arch. Rational Mech. Anal.**29**(1968), 331-335. MR**37**#1812. MR**0226222 (37:1812)****[7]**-,*Stability in linear elasticity*, Internat. J. Solid Structures**4**(1968), 1233-1242.**[8]**-,*Uniqueness in classical elastodynamics*, Arch. Rational Mech. Anal.**27**(1968), 349-355. MR**36**#2344. MR**0219261 (36:2344)****[9]**H. A. Levine,*Convexity and differential inequalities in Hilbert space*, Ph.D. Dissertation, Cornell University, Ithaca, N.Y., 1969.**[10]**-,*Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities*, J. Differential Equations**8**(1970), 34-55 MR**0259303 (41:3945)****[11]**L. E. Payne,*Bounds in the Cauchy problem for the Laplace equation*, Arch. Rational Mech. Anal.**5**(1960), 35-45. MR**22**#1743. MR**0110875 (22:1743)****[12]**-,*On some non well posed problems for partial differential equations*, Proc. Adv. Sympos. Numerical Solutions of Nonlinear Differential Equations (Madison, Wis., 1966), Wiley, New York, 1966, pp. 239-263. MR**35**#4606. MR**0213749 (35:4606)****[13]**L. E. Payne and D. Sather,*On some improperly posed problems for the Chaplygin equation*, J. Math. Anal. Appl.**19**(1967), 67-77. MR**35**#3278. MR**0212406 (35:3278)****[14]**-,*On some improperly posed problems for quasilinear equations of mixed type*, Trans. Amer. Math. Soc.**128**(1967), 135-141. MR**35**#3279. MR**0212407 (35:3279)****[15]**T. I. Zelenjak,*Asymptotic solution of a mixed problem*, Differencial'nye Uravnenija**2**(1966), 47-64 = Differential Equations**2**(1966), 23-32. MR**33**#444. MR**0192217 (33:444)****[16]**R. Carroll,*Some growth and convexity theorems for second order equations*, J. Math. Anal. Appl.**17**(1967), 508-518. MR**35**#510. MR**0209613 (35:510)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35.95

Retrieve articles in all journals with MSC: 35.95

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0274988-1

Keywords:
Logarithmic convexity,
differential inequalities,
uniqueness and stability,
problems of mixed type,
non-well-posed problems,
Chaplygin equation,
linear elasticity,
heat equation,
Cauchy problem

Article copyright:
© Copyright 1970
American Mathematical Society