Logarithmic convexity, first order differential inequalities and some applications

Author:
Howard Allen Levine

Journal:
Trans. Amer. Math. Soc. **152** (1970), 299-320

MSC:
Primary 35.95

MathSciNet review:
0274988

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let, for be a dense linear subspace of a Hilbert space , and let and be linear operators (possibly unbounded) mapping into . Let . We give sufficient conditions on and in order to insure uniqueness and stability of solutions to

**[1]**Shmuel Agmon,*Unicité et convexité dans les problèmes différentiels*, Séminaire de Mathématiques Supérieures, No. 13 (Été, 1965), Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR**0252808****[2]**S. Agmon and L. Nirenberg,*Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space*, Comm. Pure Appl. Math.**20**(1967), 207–229. MR**0204829****[3]**P. J. Chen and M. E. Gurtin,*On a theory of heat conduction involving two temperatures*, Z. Angew. Math. Phys.**19**(1968), 614-627.**[4]**Bernard D. Coleman, Richard J. Duffin, and Victor J. Mizel,*Instability, uniqueness and nonexistence theorems for the equation 𝑢_{𝑡}=𝑢ₓₓ-𝑢_{𝑥𝑡𝑥} on a strip*, Arch. Rational Mech. Anal.**19**(1965), 100–116. MR**0177215****[5]**Fritz John,*Continuous dependence on data for solutions of partial differential equations with a presribed bound*, Comm. Pure Appl. Math.**13**(1960), 551–585. MR**0130456****[6]**R. J. Knops and L. E. Payne,*On the stability of solutions of the Navier-Stokes equations backward in time*, Arch. Rational Mech. Anal.**29**(1968), 331–335. MR**0226222****[7]**-,*Stability in linear elasticity*, Internat. J. Solid Structures**4**(1968), 1233-1242.**[8]**R. J. Knops and L. E. Payne,*Uniqueness in classical elastodynamics*, Arch. Rational Mech. Anal.**27**(1967), 349–355. MR**0219261****[9]**H. A. Levine,*Convexity and differential inequalities in Hilbert space*, Ph.D. Dissertation, Cornell University, Ithaca, N.Y., 1969.**[10]**Howard Allen Levine,*Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities*, J. Differential Equations**8**(1970), 34–55. MR**0259303****[11]**L. E. Payne,*Bounds in the Cauchy problem for the Laplace equation*, Arch. Rational Mech. Anal.**5**(1960), 35–45 (1960). MR**0110875****[12]**L. E. Payne,*On some non well posed problems for partial differential equations*, Numerical Solutions of Nonlinear Differential Equations (Proc. Adv. Sympos., Madison, Wis., 1966) John Wiley & Sons, Inc., New York, 1966, pp. 239–263. MR**0213749****[13]**L. E. Payne and D. Sather,*On some improperly posed problems for the Chaplygin equation*, J. Math. Anal. Appl.**19**(1967), 67–77. MR**0212406****[14]**L. E. Payne and D. Sather,*On some improperly posed problems for quasilinear equations of mixed type*, Trans. Amer. Math. Soc.**128**(1967), 135–141. MR**0212407**, 10.1090/S0002-9947-1967-0212407-1**[15]**T. I. Zelenjak,*Asymptotic solution of a mixed problem*, Differencial′nye Uravnenija**2**(1966), 47–64 (Russian). MR**0192217****[16]**Robert Carroll,*Some growth and convexity theorems for second-order equations*, J. Math. Anal. Appl.**17**(1967), 508–518. MR**0209613**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35.95

Retrieve articles in all journals with MSC: 35.95

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0274988-1

Keywords:
Logarithmic convexity,
differential inequalities,
uniqueness and stability,
problems of mixed type,
non-well-posed problems,
Chaplygin equation,
linear elasticity,
heat equation,
Cauchy problem

Article copyright:
© Copyright 1970
American Mathematical Society