Jacobi's bound for the order of systems of first order differential equations
Author:
Barbara A. Lando
Journal:
Trans. Amer. Math. Soc. 152 (1970), 119-135
MSC:
Primary 12.80
DOI:
https://doi.org/10.1090/S0002-9947-1970-0279079-1
MathSciNet review:
0279079
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a system of differential polynomials in the differential indeterminates
, and let
be an irreducible component of the differential variety
. If
, there arises the question of securing an upper bound for the order of
in terms of the orders
of the polynomials
in
. It has been conjectured that the Jacobi number


- [1] C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys, no. 6, Amer. Math. Soc., Providence, R. I., 1951. MR 13, 64. MR 0042164 (13:64a)
- [2] R. M. Cohn, Difference algebra, Interscience, New York, 1965. MR 34 #5812. MR 0205987 (34:5812)
- [3] N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, Van Nostrand, Princeton, N. J., 1964. MR 30 #3087. MR 0172871 (30:3087)
- [4] S. Lang, Introduction to algebraic geometry, Interscience, New York, 1958. MR 20 #7021. MR 0100591 (20:7021)
- [5] J. F. Ritt, Jacobi's problem on the order of a system of differential equations, Ann. of Math. 36 (1935), 303-312. MR 1503224
- [6] -, Differential algebra, Amer. Math. Soc. Colloq. Publ., vol. 33, Amer. Math. Soc., Providence, R. I., 1950. MR 12, 7.
- [7] O. Zariski and P. Samuel, Commutative algebra. Vol. I, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958. MR 19, 833. MR 0090581 (19:833e)
- [8] -, Commutative algebra. Vol. II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006. MR 0120249 (22:11006)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 12.80
Retrieve articles in all journals with MSC: 12.80
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1970-0279079-1
Keywords:
Differential polynomial,
Jacobi bound,
differential kernel,
specialization,
dimension,
order of an irreducible differential variety
Article copyright:
© Copyright 1970
American Mathematical Society