Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the solutions of a class of linear selfadjoint differential equations


Authors: Larry R. Anderson and A. C. Lazer
Journal: Trans. Amer. Math. Soc. 152 (1970), 519-530
MSC: Primary 34.20
DOI: https://doi.org/10.1090/S0002-9947-1970-0268441-9
MathSciNet review: 0268441
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a linear selfadjoint ordinary differential operator with coefficients which are real and sufficiently regular on $ ( - \infty ,\infty )$. Let $ {A^ + }({A^ - })$ denote the subspace of the solution space of $ Ly = 0$ such that $ y \in {A^ + }(y \in {A^ - })$ iff $ {D^k}y \in {L^2}[0,\infty )({D^k}y \in {L^2}( - \infty ,0])$ for $ k = 0,1, \ldots ,m$ where $ 2m$ is the order of $ L$. A sufficient condition is given for the solution space of $ Ly = 0$ to be the direct sum of $ {A^ + }$ and $ {A^ - }$. This condition which concerns the coefficients of $ L$ reduces to a necessary and sufficient condition when these coefficients are constant. In the case of periodic coefficients this condition implies the existence of an exponential dichotomy of the solution space of $ Ly = 0$.


References [Enhancements On Off] (What's this?)

  • [1] Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [2] Paul R. Halmos, Finite dimensional vector spaces, 2nd ed., The University Series in Undergraduate Math., Van Nostrand, Princeton, N. J., 1958. MR 19, 725. MR 0089819 (19:725b)
  • [3] M. Švec, Sur le comportement asymptotique des intégrals de l' équation différentielle $ {y^{(4)}} + Q(x)y = 0$, Czechoslovak Math. J. 8 (83) (1958), 230-245. MR 21 #167. MR 0101355 (21:167)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.20

Retrieve articles in all journals with MSC: 34.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0268441-9
Keywords: $ {L^2}$ solutions of linear differential equations, periodic coefficients, asymptotic behavior of solutions
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society