Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A surface in $ E\sp{3}$ is tame if it has round tangent balls


Author: L. D. Loveland
Journal: Trans. Amer. Math. Soc. 152 (1970), 389-397
MSC: Primary 57.05
DOI: https://doi.org/10.1090/S0002-9947-1970-0270381-6
MathSciNet review: 0270381
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: R. H. Bing has asked if a $ 2$-sphere $ S$ in $ {E^3}$ is tame when it is known that for each point $ p$ in $ S$ there exist two round balls which are tangent to each other at $ p$ and which lie, except for $ p$, in opposite complementary domains of $ S$. The main result in this paper is that Bing's question has an affirmative answer.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 19, 300. MR 0087090 (19:300f)
  • [2] -, A surface is tame if its complement is $ 1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 24 #A1117. MR 0131265 (24:A1117)
  • [3] -, Spheres in $ {E^3}$, Amer. Math. Monthly 71 (1964), 353-364. MR 29 #2789. MR 0165507 (29:2789)
  • [4] -, Additional questions on $ 3$-manifolds, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 81-82. MR 36 #2154.
  • [5] C. E. Burgess and J. W. Cannon, Embeddings of surfaces in $ {E^3}$, Rocky Mt. J. of Math. (to appear).
  • [6] J. W. Cannon, Characterizations of taming sets on two-spheres, Trans. Amer. Math. Soc. 147 (1970), 289-299. MR 0257996 (41:2644)
  • [7] D. S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459-476. MR 28 #3407. MR 0160193 (28:3407)
  • [8] H. C. Griffith, Spheres uniformly wedged between balls are tame in $ {E^3}$, Amer. Math. Monthly 75 (1968), 767. MR 38 #2753. MR 0234436 (38:2753)
  • [9] L. D. Loveland, Tame surfaces and tame subsets of spheres in $ {E^3}$, Trans. Amer. Math. Soc. 123 (1966), 355-368. MR 33 #7990. MR 0199850 (33:7990)
  • [10] -, Tame subsets of spheres in $ {E^3}$, Pacific J. Math. 19 (1966), 489-517. MR 37 #903. MR 0225309 (37:903)
  • [11] -, Conditions implying that a $ 2$-sphere is almost tame, Trans. Amer. Math. Soc. 131 (1968), 170-181. MR 36 #7121. MR 0224074 (36:7121)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.05

Retrieve articles in all journals with MSC: 57.05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0270381-6
Keywords: Tame surfaces, tame $ 2$-spheres, surfaces in $ {E^3}$, tangent round balls, locally capped spheres, characterizations of tameness
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society