A surface in is tame if it has round tangent balls

Author:
L. D. Loveland

Journal:
Trans. Amer. Math. Soc. **152** (1970), 389-397

MSC:
Primary 57.05

DOI:
https://doi.org/10.1090/S0002-9947-1970-0270381-6

MathSciNet review:
0270381

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: R. H. Bing has asked if a -sphere in is tame when it is known that for each point in there exist two round balls which are tangent to each other at and which lie, except for , in opposite complementary domains of . The main result in this paper is that Bing's question has an affirmative answer.

**[1]**R. H. Bing,*Approximating surfaces with polyhedral ones*, Ann. of Math. (2)**65**(1957), 456-483. MR**19**, 300. MR**0087090 (19:300f)****[2]**-,*A surface is tame if its complement is*-ULC, Trans. Amer. Math. Soc.**101**(1961), 294-305. MR**24**#A1117. MR**0131265 (24:A1117)****[3]**-,*Spheres in*, Amer. Math. Monthly**71**(1964), 353-364. MR**29**#2789. MR**0165507 (29:2789)****[4]**-,*Additional questions on -manifolds*, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 81-82. MR**36**#2154.**[5]**C. E. Burgess and J. W. Cannon,*Embeddings of surfaces in*, Rocky Mt. J. of Math. (to appear).**[6]**J. W. Cannon,*Characterizations of taming sets on two-spheres*, Trans. Amer. Math. Soc.**147**(1970), 289-299. MR**0257996 (41:2644)****[7]**D. S. Gillman,*Side approximation, missing an arc*, Amer. J. Math.**85**(1963), 459-476. MR**28**#3407. MR**0160193 (28:3407)****[8]**H. C. Griffith,*Spheres uniformly wedged between balls are tame in*, Amer. Math. Monthly**75**(1968), 767. MR**38**#2753. MR**0234436 (38:2753)****[9]**L. D. Loveland,*Tame surfaces and tame subsets of spheres in*, Trans. Amer. Math. Soc.**123**(1966), 355-368. MR**33**#7990. MR**0199850 (33:7990)****[10]**-,*Tame subsets of spheres in*, Pacific J. Math.**19**(1966), 489-517. MR**37**#903. MR**0225309 (37:903)****[11]**-,*Conditions implying that a -sphere is almost tame*, Trans. Amer. Math. Soc.**131**(1968), 170-181. MR**36**#7121. MR**0224074 (36:7121)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57.05

Retrieve articles in all journals with MSC: 57.05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0270381-6

Keywords:
Tame surfaces,
tame -spheres,
surfaces in ,
tangent round balls,
locally capped spheres,
characterizations of tameness

Article copyright:
© Copyright 1970
American Mathematical Society