Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Group algebra modules. III


Authors: S. L. Gulick, T.-S. Liu and A. C. M. van Rooij
Journal: Trans. Amer. Math. Soc. 152 (1970), 561-579
MSC: Primary 46.80; Secondary 22.00
DOI: https://doi.org/10.1090/S0002-9947-1970-99932-7
Part IV: Trans. Amer. Math. Soc. (2) (1970), 581-596
MathSciNet review: 0270171
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma $ be a locally compact group and $ K$ a Banach space. The left $ {L^1}(\Gamma )$ module $ K$ is by definition absolutely continuous under the composition $ \ast $ if for $ k \in K$ there exist $ f \in {L^1}(\Gamma ),k' \in K$ with $ k = f \ast k'$. If the locally compact Hausdorff space $ X$ is a transformation group over $ \Gamma $ and has a measure quasi-invariant with respect to $ \Gamma $, then $ {L^1}(X)$ is an absolutely continuous $ {L^1}(\Gamma )$ module--the main object we study. If $ Y \subseteq X$ is measurable, let $ {L_Y}$ consist of all functions in $ {L^1}(X)$ vanishing outside $ Y$. For $ \Omega \subseteq \Gamma $ not locally null and $ B$ a closed linear subspace of $ K$, we observe the connection between the closed linear span (denoted $ {L_\Omega } \ast B$) of the elements $ f \ast k$, with $ f \in {L_\Omega }$ and $ k \in B$, and the collection of functions of $ B$ shifted by elements in $ \Omega $. As a result, a closed linear subspace of $ {L^1}(X)$ is an $ {L_Z}$ for some measurable $ Z \subseteq X$ if and only if it is closed under pointwise multiplication by elements of $ {L^\infty }(X)$. This allows the theorem stating that if $ \Omega \subseteq \Gamma $ and $ Y \subseteq X$ are both measurable, then there is a measurable subset $ Z$ of $ X$ such that $ {L_\Omega } \ast {L_Y} = {L_Z}$. Under certain restrictions on $ \Gamma $, we show that this $ Z$ is essentially open in the (usually stronger) orbit topology on $ X$. Finally we prove that if $ \Omega $ and $ Y$ are both relatively sigma-compact, and if also $ {L_\Omega } \ast {L_Y} \subseteq {L_Y}$, then there exist $ {\Omega _1}$ and $ {Y_1}$ locally almost everywhere equal to $ \Omega $ and $ Y$ respectively, such that $ {\Omega _1}{Y_1} \subseteq {Y_1}$; in addition we characterize those $ \Omega $ and $ Y$ for which $ {L_\Omega } \ast {L_\Omega } = {L_\Omega }$ and $ {L_\Omega } \ast {L_Y} = {L_Y}$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Intégration. Chapitre 6: Intégration vectorielle, Actualités Sci. Indust., no. 1281, Hermann, Paris, 1959. MR 23 #A2033. MR 0124722 (23:A2033)
  • [2] P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. MR 21 #3729. MR 0104982 (21:3729)
  • [3] S. L. Gulick, T.-S. Liu and A. C. M. van Rooij, Group algebra modules. I, Canad. J. Math. 19 (1967), 133-150. MR 36 #5712. MR 0222662 (36:5712)
  • [4] -, Group algebra modules. II, Canad. J. Math. 19 (1967), 151-173. MR 36 #5713. MR 0222663 (36:5713)
  • [5] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. 1 : Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York and Springer-Verlag, Berlin and New York, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [6] T.-S. Liu, Invariant subspaces of some function spaces, Quart. J. Math. Oxford Ser. (2) 14 (1963), 231-239. MR 27 #1561. MR 0151577 (27:1561)
  • [7] T.-S. Liu and A. C. M. van Rooij, Transformation groups and absolutely continuous measures. II, Nederl. Akad. Wetensch. Proc Ser. A 73 = Indag. Math. 32 (1970), 57-61. MR 0260980 (41:5600)
  • [8] -, Sums and intersections of normed linear spaces, Math. Nachr. 42 (1969), 29-42. MR 0273370 (42:8249)
  • [9] W. Rudin, Measure algebras on abelian groups, Bull. Amer. Math. Soc. 65 (1959), 227-247. MR 21 #7404. MR 0108689 (21:7404)
  • [10] A. B. Simon, Vanishing algebras, Trans. Amer. Math. Soc. 92 (1959), 154-167. MR 23 #A1240. MR 0123919 (23:A1240)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.80, 22.00

Retrieve articles in all journals with MSC: 46.80, 22.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-99932-7
Keywords: Transformation group, quasi-invariant measure, absolutely continuous measure, approximate identity, factorable, orbit topology, vanishing algebra, group algebra module
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society