Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A Galois theory for inseparable field extensions


Author: Nickolas Heerema
Journal: Trans. Amer. Math. Soc. 154 (1971), 193-200
MSC: Primary 12.40
DOI: https://doi.org/10.1090/S0002-9947-1971-0269632-4
MathSciNet review: 0269632
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Galois theory is obtained for fields k of characteristic $ p \ne 0$ in which the Galois subfields h are those for which k/h is normal, modular, and for some nonnegative integer r, $ h({k^{{p^{r + 1}}}})/h$ is separable. The related automorphism groups G are subgroups of the group A of automorphisms $ \alpha $ on $ k[\bar X] = k[X]/{X^{{p^{r + 1}}}}k[X]$, X an indeterminate, such that $ \alpha (\bar X) = \bar X$. A subgroup G of A is Galois if and only if G is a semidirect product of subgroups $ {G_k}$ and $ {G_0}$, where $ {G_k}$ is a Galois group of automorphisms on k (classical separable theory) and $ {G_0}$ is a Galois group of rank $ {p^r}$ higher derivations on k (Jacobson-Davis purely inseparable theory). Implications of certain invariance conditions on a Galois subgroup of a Galois group are also investigated.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Davis, A Galois theory for a class of purely inseparable field extensions, Dissertation, Florida State University, Tallahassee, Fla., 1969.
  • [2] -, A Galois theory for a class of purely inseparable exponent two field extensions, Bull. Amer. Math. Soc. 75 (1969), 1001-1004. MR 39 #5524. MR 0244207 (39:5524)
  • [3] H. Hasse and F. K. Schmidt, Noch eine Begrundung der Theorie der höheren Differential-quotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine Angew. Math. 177 (1936), 215-237.
  • [4] N. Heerema, Derivations and embeddings of a field in its power series ring. II, Michigan Math. J. 8 (1961), 129-134. MR 25 #69. MR 0136601 (25:69)
  • [5] -, Convergent higher derivations on local rings, Trans. Amer. Math. Soc. 132 (1968), 31-44. MR 36 #6406. MR 0223358 (36:6406)
  • [6] N. Jacobson, Galois theory of purely inseparable fields of exponent one, Amer. J. Math. 66 (1944), 645-648. MR 6, 115. MR 0011079 (6:115c)
  • [7] -, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, Van Nostrand, Princeton, N. J., 1964. MR 30 #3087. MR 0172871 (30:3087)
  • [8] M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 36 #6391. MR 0223343 (36:6391)
  • [9] -, Correction to: ``Structure of inseparable extensions", Ann. of Math. (2) 89 (1969), 206-207. MR 38 #4451. MR 0236153 (38:4451)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12.40

Retrieve articles in all journals with MSC: 12.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0269632-4
Keywords: Higher derivations, normal field extension, modular field extension, purely inseparable field extension, semidirect product, linear disjointness, tensor product
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society