Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Integrally closed subrings of an integral domain


Authors: Robert Gilmer and Joe Mott
Journal: Trans. Amer. Math. Soc. 154 (1971), 239-250
MSC: Primary 13.15
DOI: https://doi.org/10.1090/S0002-9947-1971-0271082-1
MathSciNet review: 0271082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let D be an integral domain with identity having quotient field K. This paper gives necessary and sufficient conditions on D in order that each integrally closed subring of D should belong to some subclass of the class of integrally closed domains; some of the subclasses considered are the completely integrally closed domains, Prüfer domains, and Dedekind domains.


References [Enhancements On Off] (What's this?)

  • [1] J. Arnold and R. Gilmer, Idempotent ideals and unions of nets and Prüfer domains, J. Sci. Hiroshima Univ. Ser. A-I Math. 31 (1967), 131-145. MR 37 #2741. MR 0227156 (37:2741)
  • [2] N. Bourbaki, Algèbre commutative, Chap. 7, Hermann, Paris, 1965. MR 0260715 (41:5339)
  • [3] J. Brewer and J. Mott, Integral domains of finite character, J. Reine Angew. Math. 241 (1970), 34-41. MR 0260717 (41:5341)
  • [4] I. S. Cohen and O. Zariski, A fundamental inequality in the theory of extensions of valuations, Illinois J. Math. 1 (1957), 1-8. MR 18, 788. MR 0083982 (18:788e)
  • [5] E. D. Davis, Overrings of commutative rings. II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196-212. MR 28 #111. MR 0156868 (28:111)
  • [6] O. Endler, Endliche separable Körpererweiterungen mit vorgeschriebenen Bewertungsfortsetzungen. I, Abh. Math. Sem. Hamburg 33 (1969), 80-101. MR 39 #4124. MR 0242797 (39:4124)
  • [7] R. Gilmer, Integral domains with Noetherian subrings, Comment. Math. Helv. 45 (1970), 129-134. MR 0262216 (41:6826)
  • [8] -, Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813-818. MR 29 #3489. MR 0166212 (29:3489)
  • [9] -, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., no. 12, Queen's University, Kingston, Ont., 1968. MR 37 #5198. MR 0229624 (37:5198)
  • [10] R. Gilmer and J. Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964), 97-103. MR 28 #3051. MR 0159835 (28:3051)
  • [11] M. Griffin, Families of finite character and essential valuations, Trans. Amer. Math. Soc. 130 (1968), 75-85. MR 36 #1423. MR 0218336 (36:1423)
  • [12] W. Heinzer, Some properties of integral closure, Proc. Amer. Math. Soc. 18 (1967), 749-753. MR 35 #5429. MR 0214580 (35:5429)
  • [13] W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160-196.
  • [14] -, Über einen Existenzsatz der Bewertungstheorie, Abh. Math. Sem. Univ. Hamburg 23 (1959), 29-35. MR 21 #3406. MR 0104653 (21:3406)
  • [15] T. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc. 55 (1949), 1142-1146. MR 11, 311. MR 0032592 (11:311e)
  • [16] J. Ohm, Some counterexamples related to integral closure in $ D[[X]]$, Trans. Amer. Math. Soc. 122 (1966), 321-333. MR 34 #2613. MR 0202753 (34:2613)
  • [17] -, Integral closure and $ {(x,y)^n} = ({x^n},{y^n})$, Monatsh. Math. 71 (1967), 32-39. MR 34 #4290. MR 0204448 (34:4290)
  • [18] R. Pendleton, A characterization of Q-domains, Bull. Amer. Math. Soc. 72 (1966), 499-500. MR 32 #7578. MR 0190164 (32:7578)
  • [19] P. Ribenboim, Anneaux normaux réels à caractère fini, Summa Brasil. Math. 3 (1956), 213-253. MR 20 #3860. MR 0097391 (20:3860)
  • [20] P. Roquette, On the prolongation of valuations, Trans. Amer. Math. Soc. 88 (1958), 42-56. MR 20 #7019. MR 0100589 (20:7019)
  • [21] O. Zariski and P. Samuel, Commutative algebra, Vol. 1, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958. MR 19, 833. MR 0090581 (19:833e)
  • [22] -, Commutative algebra, Vol. 2, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13.15

Retrieve articles in all journals with MSC: 13.15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0271082-1
Keywords: Integrally closed domain, completely integrally closed, Prüfer domain, Krull domain, Dedekind domain, almost Dedekind domain
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society