Representations for transformations continuous in the norm
Authors:
J. R. Edwards and S. G. Wayment
Journal:
Trans. Amer. Math. Soc. 154 (1971), 251265
MSC:
Primary 28.50; Secondary 46.00
MathSciNet review:
0274704
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Riemann and Lebesguetype integrations can be employed to represent operators on normed function spaces whose norms are not stronger than supnorm by where is determined by the action of T on the simple functions. The realvalued absolutely continuous functions on [0, 1] are not in the closure of the simple functions in the BV norm, and hence such an integral representation of an operator is not obtainable. In this paper the authors develop a vintegral whose structure depends on fundamental functions different than simple functions. This integral is as computable as the Riemann integral. By using these fundamental functions, the authors are able to obtain a direct, analytic representation of the linear functionals on AC which are continuous in the BV norm in terms of the vintegral. Further, the vintegral gives a characterization of the dual of AC in terms of the space of fundamentally bounded set functions which are convex with respect to length. This space is isometrically isomorphically identified with the space of Lipschitz functions anchored at zero with the norm given by the Lipschitz constant, which in turn is isometrically isomorphic to . Hence a natural identification exists between the classical representation and the one given in this paper. The results are extended to the vector setting.
 [1]
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers,
Ltd., London, 1958. MR 0117523
(22 #8302)
 [2]
R.
J. Easton and D.
H. Tucker, A generalized lebesguetype integral, Math. Ann.
181 (1969), no. 4, 311–324. MR
1513279, http://dx.doi.org/10.1007/BF01350670
 [3]
J.
R. Edwards and S.
G. Wayment, A unifying representation theorem, Math. Ann.
187 (1970), 317–328. MR 0270181
(42 #5074)
 [4]
J.
R. Edwards and S.
G. Wayment, Integral representations for
continuous linear operators in the setting of convex topological vector
spaces, Trans. Amer. Math. Soc. 157 (1971), 329–345. MR 0281867
(43 #7581), http://dx.doi.org/10.1090/S00029947197102818673
 [5]
T.
H. Hildebrandt, Linear continuous functionals on the
space (𝐵𝑉) with weak topologies, Proc. Amer. Math. Soc. 17 (1966), 658–664. MR 0193490
(33 #1710), http://dx.doi.org/10.1090/S00029939196601934903
 [6]
T.
H. Hildebrandt, Linear operations on functions of
bounded variation, Bull. Amer. Math. Soc.
44 (1938), no. 2,
75. MR
1563684, http://dx.doi.org/10.1090/S000299041938066852
 [7]
Ralph
E. Lane, The integral of a function with
respect to a function, Proc. Amer. Math.
Soc. 5 (1954),
59–66. MR
0059346 (15,514e), http://dx.doi.org/10.1090/S00029939195400593463
 [8]
I.
P. Natanson, Teoriya funkciĭ\
veščestvennoĭ\ peremennoĭ, Gosudarstv.
Izdat. Tehn.Teor. Lit.,], MoscowLeningrad, 1950 (Russian). MR 0039790
(12,598d)
 [9]
E. J. Purcell, Calculus with analytic geometry, AppletonCenturyCrofts, New York, 1965.
 [10]
F. Riesz, Sur les opérations fonctionelles linéaires, C. R. Acad. Sci. Paris 149 (1909), 974977.
 [11]
Don
H. Tucker, A note on the Riesz representation
theorem, Proc. Amer. Math. Soc. 14 (1963), 354–358. MR 0145334
(26 #2865), http://dx.doi.org/10.1090/S00029939196301453340
 [12]
D.
H. Tucker and S.
G. Wayment, Absolute continuity and the RadonNikodym theorem,
J. Reine Angew. Math. 244 (1970), 1–19. MR 0272978
(42 #7859)
 [13]
David
J. Uherka, Generalized Stieltjes integrals and a strong
representation theorem for continuous linear maps on a function space,
Math. Ann. 182 (1969), 60–66. MR 0247439
(40 #705)
 [1]
 N. Dunford and J. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
 [2]
 R. J. Easton and D. H. Tucker, A generalized Lebesguetype integral, Math. Ann. 181 (1969), 311324. MR 1513279
 [3]
 J. R. Edwards and S. G. Wayment, A unifying integral representation theorem, Math. Ann. 187 (1970), 317328. MR 0270181 (42:5074)
 [4]
 , Integral representations for continuous linear operators in the setting of convex topological vector spaces, Trans. Amer. Math. Soc. (to appear). MR 0281867 (43:7581)
 [5]
 T. H. Hildebrandt, Linear continuous functionals on the space (BV) with weak topologies, Proc. Amer. Math. Soc. 17 (1966), 658664. MR 33 #1710. MR 0193490 (33:1710)
 [6]
 , Linear operations on functions of bounded variation, Bull. Amer. Math. Soc. 44 (1938), 75. MR 1563684
 [7]
 R. Lane, The integral of a function with respect to a function, Proc. Amer. Math. Soc. 5 (1954), 5966. MR 15, 514. MR 0059346 (15:514e)
 [8]
 I. P. Natanson, Theory of functions of a real variable, GITTL, Moscow, 1957; English transl., Ungar, New York, 1961. MR 26 #6309. MR 0039790 (12:598d)
 [9]
 E. J. Purcell, Calculus with analytic geometry, AppletonCenturyCrofts, New York, 1965.
 [10]
 F. Riesz, Sur les opérations fonctionelles linéaires, C. R. Acad. Sci. Paris 149 (1909), 974977.
 [11]
 D. H. Tucker, A note on the Riesz representation theorem, Proc. Amer. Math. Soc. 14 (1963), 354358. MR 26 #2865. MR 0145334 (26:2865)
 [12]
 D. H. Tucker and S. G. Wayment, Absolute continuity and the RadonNikodym theorem, J. Reine Angew. Math. (to appear). MR 0272978 (42:7859)
 [13]
 D. H. Uherka, Generalized Stieltjes integrals and a strong representation theorem for continuous maps on a function space, Math. Ann. 182 (1969), 6066. MR 0247439 (40:705)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
28.50,
46.00
Retrieve articles in all journals
with MSC:
28.50,
46.00
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197102747044
PII:
S 00029947(1971)02747044
Keywords:
Generalized Stieltjestype integral,
vintegral,
integral representation,
convex with respect to length,
fundamentally bounded,
Lipschitz function,
dual space,
vectorvalued functions,
absolute continuity,
bounded variation,
semiabsolute continuity,
semibounded variation
Article copyright:
© Copyright 1971
American Mathematical Society
