Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dense sigma-compact subsets of infinite-dimensional manifolds


Author: T. A. Chapman
Journal: Trans. Amer. Math. Soc. 154 (1971), 399-426
MSC: Primary 57.55
DOI: https://doi.org/10.1090/S0002-9947-1971-0283828-7
MathSciNet review: 0283828
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper four classes of separable metric infinite-dimensional manifolds are studied; those which are locally the countable infinite product of lines, those which are locally open subsets of the Hubert cube, and those which are locally one of two dense sigma-compact subsets of the Hilbert cube. A number of homeomorphism, product, characterization, and embedding theorems are obtained concerning these manifolds.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519. MR 32 #8298. MR 0190888 (32:8298)
  • [2] -, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216. MR 34 #5045. MR 0205212 (34:5045)
  • [3] -, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383. MR 35 #4893. MR 0214041 (35:4893)
  • [4] -, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64-67. MR 38 #6634. MR 0238358 (38:6634)
  • [5] -, A characterization of apparent boundaries of the Hilbert cube, Notices Amer. Math. Soc. 16 (1969), 429. Abstract #697-G17.
  • [6] -, On sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (submitted).
  • [7] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 37 #5847. MR 0230284 (37:5847)
  • [8] R. D. Anderson and John D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283-289. MR 0258064 (41:2711)
  • [9] R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330. MR 0246327 (39:7631)
  • [10] R. D. Anderson, David W. Henderson and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143-150. MR 0246326 (39:7630)
  • [11] William Barit, Small extensions of small homeomorphisms, Notices Amer. Math. Soc. 16 (1969), 295. Abstract #663-715.
  • [12] C. Bessaga and A. Pełczyński, Estimated extension theorem, homogeneous collections and skeletons, and their applications to topological classifications of linear metric spaces and convex sets, Fund. Math. (submitted).
  • [13] T. A. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. 148 (1970), 137-146. MR 0256418 (41:1074)
  • [14] David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759-762. MR 0247634 (40:898)
  • [15] W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 312. MR 0006493 (3:312b)
  • [16] K. Kuratowski, Topologie. Vol. 1: Espaces métrisables, espaces complets, 2nd ed., Monografie Mat., Tom 20, PWN, Warsaw, 1948. MR 10, 389.
  • [17] H. Torunczyk, Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube, Bull. Acad. Polon. Sci. Cl. III 18 (1970), 119-126. MR 0264602 (41:9194)
  • [18] James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1-25. MR 0266147 (42:1055)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.55

Retrieve articles in all journals with MSC: 57.55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0283828-7
Keywords: Fréchet manifold, Hubert cube manifold, compact absorption property, Property Z, infinite deficiency, finite-dimensional compact absorption property
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society