Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Under the degree of some finite linear groups


Author: Harvey I. Blau
Journal: Trans. Amer. Math. Soc. 155 (1971), 95-113
MSC: Primary 20.80
DOI: https://doi.org/10.1090/S0002-9947-1971-0274604-X
Erratum: Trans. Amer. Math. Soc. 162 (1971), 475.
MathSciNet review: 0274604
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a finite group with a cyclic Sylow $ p$-subgroup $ P$ for some prime $ p \geqq 13$. Assume that $ G$ is not of type $ {L_2}(p)$, and that $ G$ has a faithful indecomposable modular representation of degree $ d \leqq p$. This paper offers several improvements of the known bound $ d \geqq (7p)/10 - 1/2$. In particular, $ d \geqq 3(p - 1)/4$. Other bounds are given relative to the order of the center of $ G$ and the index of the centralizer of $ P$ in its normalizer.


References [Enhancements On Off] (What's this?)

  • 1. H. Blau, On the degree of some finite linear groups, Ph.D. Thesis, Yale University, New Haven, Conn., 1969.
  • [1] R. Brauer, Investigations on group characters, Ann. of Math. (2) 42 (1941), 936-958. MR 3, 196. MR 0005731 (3:196b)
  • [2] -, On groups whose order contains a prime number to the first power. I, II, Amer. J. Math. 64 (1942), 421-440. MR 4, 1; MR 4, 2. MR 0006538 (4:2a)
  • [3] -, Some results on finite groups whose order contains a prime to the first power, Nagoya Math. J. 27 (1966), 381-399. MR 33 #7402. MR 0199253 (33:7402)
  • [4] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20-48. MR 34 #251. MR 0200355 (34:251)
  • [5] W. Feit, Groups with a cyclic Sylow subgroup, Nagoya Math. J. 27 (1966), 571-584. MR 33 #7404. MR 0199255 (33:7404)
  • [6] -, On finite linear groups, J. Algebra 5 (1967), 378-400. MR 34 #7632. MR 0207818 (34:7632)
  • [7] -, Modular representations of finite groups, Lecture Notes, Yale University, New Haven, Conn., 1969.
  • [8] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1958/59), 430-445. MR 24 #A1304. MR 0131454 (24:A1304)
  • [9] -, Blocks of modular representations, Math. Z. 79 (1962), 100-115. MR 25 #5114. MR 0141717 (25:5114)
  • [10] -, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619. MR 25 #5106. MR 0141709 (25:5106)
  • [11] Z. Janko, A new finite simple group with abelian Sylow $ 2$-subgroups and its characterization, J. Algebra 3 (1966), 147-186. MR 33 #1359. MR 0193138 (33:1359)
  • [12] G. J. Janusz, Indecomposable modules for finite groups, Ann. of Math. (2) 89 (1969), 209-241. MR 39 #5622. MR 0244307 (39:5622)
  • [13] B. Rothschild, Degrees of irreducible modular characters of blocks with cyclic defect groups, Bull. Amer. Math. Soc. 73 (1967), 102-104. MR 34 #4381. MR 0204542 (34:4381)
  • [14] J. G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1-6. MR 34 #7677. MR 0207863 (34:7677)
  • [15] H. F. Tuan, On groups whose orders contain a prime number to the first power, Ann. of Math. (2) 45 (1944), 110-140. MR 5, 143. MR 0009397 (5:143f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.80

Retrieve articles in all journals with MSC: 20.80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0274604-X
Keywords: Indecomposable modular representation, small degree, cyclic Sylow $ p$-subgroup, symmetric decomposition, skew decomposition, irreducible complex representation
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society