Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cubes with knotted holes


Authors: R. H. Bing and J. M. Martin
Journal: Trans. Amer. Math. Soc. 155 (1971), 217-231
MSC: Primary 55.20; Secondary 54.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0278287-4
MathSciNet review: 0278287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The statement that a knot $ K$ has Property $ {\rm {P}}$ means that (1) if $ C$ is a cube with a


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. 28 (1926), 562-586. MR 1502807
  • [2] R. H. Bing, Necessary and sufficient conditions that a $ 3$-manifold be $ {S^3}$, Ann. of Math. (2) 68 (1958), 17-37. MR 20 #1973. MR 0095471 (20:1973)
  • [3] -, Correction to ``Necessary and sufficient conditions that a $ 3$-manifold be $ {S^3}$", Ann. of Math. (2) 77 (1963), 210. MR 25 #5508. MR 0142115 (25:5508)
  • [4] -, Some aspects of the topology of $ 3$-manifolds related to the Poincaré conjecture, Lectures on Modern Math., vol. 2, Wiley, New York, 1964, pp. 93-128. MR 30 #2474.
  • [5] -, Computing the fundamental group of the complement of curves, Washington State University, Pullman, Wash., 1965.
  • [6] G. Birkhoff and S. Mac Lane, A survey of modern algebra, 3rd ed., Macmillan, New York, 1965. MR 31 #2250. MR 0177992 (31:2250)
  • [7] A. C. Conner, Splittable knots (preprint).
  • [8] H. S. M. Coxeter, The abstract groups $ {G^{m,n,p}}$, Trans. Amer. Math. Soc. 45 (1939), 73-150. MR 1501984
  • [9] -, The abstract group $ {G^{3,7,16}}$, Proc. Edinburgh Math. Soc. (2) 13 (1962), 47-61, 189. MR 26 #190; MR 26 #6267. MR 0142621 (26:190)
  • [10] R. H. Fox, A quick trip through knot theory, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 25 #3522. MR 0140099 (25:3522)
  • [11] H. Gluck, Ph.D. Thesis, Princeton University, Princeton, N. J., 1961.
  • [12] J. Hempel, Construction of orientable $ 3$-manifolds, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Geogria Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 207-212. MR 25 #3538. MR 0140115 (25:3538)
  • [13] -, A simply connected $ 3$-manifold is $ {S^3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158. MR 28 #599. MR 0157365 (28:599)
  • [14] W. B. R. Lickorish, A representation of orientable combinatorial $ 3$-manifolds, Ann. of Math. (2) 76 (1962), 531-540. MR 27 #1929. MR 0151948 (27:1929)
  • [15] L. Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791-798. MR 22 #11397. MR 0120648 (22:11397)
  • [16] D. Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131-141. MR 36 #2137. MR 0219054 (36:2137)
  • [17] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281-299. MR 19, 441. MR 0087944 (19:441d)
  • [18] -, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 19, 761. MR 0090053 (19:761a)
  • [19] H. Poincaré, Second complément a l'analysis situs, Proc. London Math. Soc. (2) 32 (1900), 277-308.
  • [20] -, Cinquieme complément a l'analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110.
  • [21] H. F. Trotter, Non-invertible knots exist, Topology 2 (1963), 275-280. MR 28 #1618; errata MR 30 p. 1203. MR 0158395 (28:1618)
  • [22] A. H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528. MR 23 #A2887. MR 0125588 (23:A2887)
  • [23] J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12 (1937), 63-71.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.20, 54.00

Retrieve articles in all journals with MSC: 55.20, 54.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0278287-4
Keywords: Knots, cubes with knotted holes, Poincaré conjecture, $ 3$-manifolds, Property $ {\rm {P}}$
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society