Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On conformal maps of infinitely connected Dirichlet regions


Author: V. C. Williams
Journal: Trans. Amer. Math. Soc. 155 (1971), 427-453
MSC: Primary 30.40
DOI: https://doi.org/10.1090/S0002-9947-1971-0280698-8
MathSciNet review: 0280698
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be a plane region of arbitrary connectivity $ ( > 1)$ for which the Dirichlet problem is solvable. There exists a conformal map of $ D$ onto a region bounded by two level loci of $ H$, a nontrivial harmonic measure. $ H$ is essentially the difference of two logarithmic potentials. The two measures involved are mutually singular probability measures. Further properties of these measures, and of $ H$, are derived.

The special case in which $ D$ is of connectivity 2 is the classical theorem which states that an annular region is conformally equivalent to a region bounded by two circles. The case in which $ D$ is of finite connectivity was treated by J. L. Walsh in 1956.

A similar generalization of the Riemann mapping theorem is also established.

Finally, converses of the above results are also valid.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Series, no. 26, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729. MR 0114911 (22:5729)
  • [2] C. Carathéodory, Conformal representation, 2nd ed., Cambridge Tracts in Math. and Math. Phys., no. 28, Cambridge Univ. Press, New York, 1952. MR 13, 734. MR 0046435 (13:734a)
  • [3] H. S. M. Coxeter, Introduction to geometry, Wiley, New York, 1961. MR 23 #A1251. MR 0123930 (23:A1251)
  • [4] H. Grunsky, Über konforme Abbildungen, die gewisse Gebietsfunktionen in elementare Funktionen transformieren. I, Math. Z. 67 (1957), 129-132. MR 19, 538. MR 0088547 (19:538b)
  • [5] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [6] F. Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English transl., Chelsea, New York, 1957. MR 19, 111.
  • [7] J. A. Jenkins, On a canonical conformal mapping of J. L. Walsh, Trans. Amer. Math. Soc. 88 (1958), 207-213. MR 19, 538. MR 0088549 (19:538d)
  • [8] H. J. Landau, On canonical conformal maps of multiply connected domains, Trans. Amer. Math. Soc. 99 (1961), 1-20. MR 22 #12212. MR 0121474 (22:12212)
  • [9] R. L. Moore, Concerning the separation of point sets by curves, Proc. Nat. Acad. Sci. U.S.A. 11 (1925), 469-476.
  • [10] -, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 0150722 (27:709)
  • [11] J. L. Walsh, On the conformal mapping of multiply connected regions, Trans. Amer. Math. Soc. 82 (1956), 128-146. MR 18, 290. MR 0080727 (18:290a)
  • [12] J. L. Walsh and H. J. Landau, On canonical conformal maps of multiply connected regions, Trans. Amer. Math. Soc. 93 (1959), 81-96. MR 28 #4093. MR 0160884 (28:4093)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.40

Retrieve articles in all journals with MSC: 30.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0280698-8
Keywords: Infinitely connected Dirichlet region, harmonic measure, logarithmic potential, subharmonic function
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society