Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A construction of Lie algebras from a class of ternary algebras

Author: John R. Faulkner
Journal: Trans. Amer. Math. Soc. 155 (1971), 397-408
MSC: Primary 17B05
MathSciNet review: 0294424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of algebras with a ternary composition and alternating bilinear form is defined. The construction of a Lie algebra from a member of this class is given, and the Lie algebra is shown to be simple if the form is nondegenerate. A characterization of the Lie algebras so constructed in terms of their structure as modules for the three-dimensional simple Lie algebra is obtained in the case the base ring contains 1/2. Finally, some of the Lie algebras are identified; in particular, Lie algebras of type $ {E_8}$ are obtained.

References [Enhancements On Off] (What's this?)

  • [1] R. B. Brown, Groups of type $ {E_7}$, J. Reine Angew. Math. 236 (1969), 79-102. MR 0248185 (40:1439)
  • [2] H. Freudenthal, Beziehungen der $ {\mathfrak{E}_7}$ und $ {\mathfrak{E}_8}$ zur Oktavenebene. II, Nederl. Akad. Wetensch. Proc. Ser. A 57 = Indag. Math. 16 (1954), 363-368. MR 16, 900. MR 0068549 (16:900d)
  • [3] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Amer. Math. Soc., Providence, R. I., 1968. MR 0251099 (40:4330)
  • [4] M. Koecher, Imbedding of Jordan algebras into Lie algebras. I, Amer. J. Math. 89 (1967), 787-815. MR 35 #5480. MR 0214631 (35:5480)
  • [5] K. McCrimmon, The Freudenthal-Springer-Tits construction of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495-510. MR 39 #276. MR 0238916 (39:276)
  • [6] G. B. Seligman, On the split exceptional Lie algebra $ {E_7}$, Yale University, New Haven, Conn. (mimeographed notes).
  • [7] J. Tits, Une classe d'algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 530-535. MR 26 #3753. MR 0146231 (26:3753)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B05

Retrieve articles in all journals with MSC: 17B05

Additional Information

Keywords: Lie algebras, Jordan algebras, ternary algebra, simple Lie algebras, Lie algebras of type $ {E_7}$, Lie algebras of type $ {E_8}$
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society