Some iterated logarithm results related to the central limit theorem.

Author:
R. J. Tomkins

Journal:
Trans. Amer. Math. Soc. **156** (1971), 185-192

MSC:
Primary 60.30

DOI:
https://doi.org/10.1090/S0002-9947-1971-0275503-X

MathSciNet review:
0275503

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An iterated logarithm theorem is presented for sequences of independent, not necessarily bounded, random variables, the distribution of whose partial sums is related to the standard normal distribution in a particular manner. It is shown that if a sequence of independent random variables satisfies the Central Limit Theorem with a sufficiently rapid rate of convergence, then the law of the iterated logarithm holds. In particular, it is demonstrated that these results imply several known iterated logarithm results, including Kolmogorov's celebrated theorem.

**[1]**Andrew C. Berry,*The accuracy of the Gaussian approximation to the sum of independent variates*, Trans. Amer. Math. Soc.**49**(1941), 122–136. MR**0003498**, https://doi.org/10.1090/S0002-9947-1941-0003498-3**[2]**Kai Lai Chung,*A course in probability theory*, Harcourt, Brace & World, Inc., New York, 1968. MR**0229268****[3]**W. Feller,*Generalization of a probability limit theorem of Cramér*, Trans. Amer. Math. Soc.**54**(1943), 361–372. MR**0009262**, https://doi.org/10.1090/S0002-9947-1943-0009262-5**[4]**William Feller,*An introduction to probability theory and its applications. Vol. I*, John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1957. 2nd ed. MR**0088081****[5]**William Feller,*An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0210154****[6]**Philip Hartman and Aurel Wintner,*On the law of the iterated logarithm*, Amer. J. Math.**63**(1941), 169–176. MR**0003497**, https://doi.org/10.2307/2371287**[7]**Philip Hartman,*Normal distributions and the law of the iterated logarithm*, Amer. J. Math.**63**(1941), 584–588. MR**0004405**, https://doi.org/10.2307/2371372**[8]**A. Kolmogoroff,*Über das Gesetz des iterierten Logarithmus*, Math. Ann.**101**(1929), no. 1, 126–135 (German). MR**1512520**, https://doi.org/10.1007/BF01454828**[9]**Michel Loève,*Probability theory*, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR**0203748****[10]**J. Marcinkiewicz and A. Zygmund,*Remarque sur la loi du logarithme itéré*, Fund. Math.**29**(1937), 215-222.**[11]**V. V. Petrov,*A bound for the deviation of the distribution of a sum of independent random variables from the normal law*, Dokl. Akad. Nauk SSSR**160**(1965), 1013–1015 (Russian). MR**0178497****[12]**V. V. Petrov,*On a relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm*, Teor. Verojatnost. i Primenen**11**(1966), 514–518 (Russian, with English summary). MR**0212855****[13]**Valentin V. Petrov,*On the law of the iterated logarithm without assumptions about the existence of moments*, Proc. Nat. Acad. Sci. U.S.A.**59**(1968), 1068–1072. MR**0228052****[14]**V. Strassen,*An invariance principle for the law of the iterated logarithm*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**3**(1964), 211–226 (1964). MR**0175194**, https://doi.org/10.1007/BF00534910**[15]**Mary Weiss,*On the law of the iterated logarithm*, J. Math. Mech.**8**(1959), 121–132. MR**0102853**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60.30

Retrieve articles in all journals with MSC: 60.30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1971-0275503-X

Keywords:
Independent random variables,
law of the iterated logarithm,
Central Limit Theorem,
normal distribution,
Berry-Esseen bounds,
Lindeberg's criterion,
Kolmogorov's theorem

Article copyright:
© Copyright 1971
American Mathematical Society