A class of complete orthogonal sequences of step functions
Authors:
J. L. Sox and W. J. Harrington
Journal:
Trans. Amer. Math. Soc. 157 (1971), 129-135
MSC:
Primary 42.15
DOI:
https://doi.org/10.1090/S0002-9947-1971-0275046-3
MathSciNet review:
0275046
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A class of orthogonal sets of step functions is defined and each member is shown to be complete in . Pointwise convergence theorems are obtained for the Fourier expansions relative to these sets. The classical Haar orthogonal set is shown to be a set of this class and the class itself is seen to be a subclass of the ``generalized Haar systems'' defined recently by Price.
- [1] P. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529. MR 1512499
- [2] A. Haar, Zur Theorie der Orthogonalen Funktionenysystems, Math. Ann. 69 (1910), 331-371. MR 1511592
- [3] J. J. Price, An algebraic characterization of certain orthonormal systems, Proc. Amer. Math. Soc. 19 (1968), 268-273. MR 37 #682. MR 0225085 (37:682)
- [4] A. Zygmund, Trigonometrical series, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 42.15
Retrieve articles in all journals with MSC: 42.15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1971-0275046-3
Keywords:
Haar functions,
Fourier analysis,
orthonormal set of functions,
complete in ,
pointwise convergence,
generalized Haar system
Article copyright:
© Copyright 1971
American Mathematical Society