Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stochastic equations with discontinuous drift


Author: Edward D. Conway
Journal: Trans. Amer. Math. Soc. 157 (1971), 235-245
MSC: Primary 60.75
DOI: https://doi.org/10.1090/S0002-9947-1971-0275532-6
MathSciNet review: 0275532
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study stochastic differential equations, $ dx = adt + \sigma d\beta $ where $ \beta $ denotes a Brownian motion. By relaxing the definition of solutions we are able to prove existence theorems assuming only that $ a$ is measurable, $ \sigma $ is continuous and that both grow linearly at infinity. Nondegeneracy is not assumed. The relaxed definition of solution is an extension of A. F. Filippov's definition in the deterministic case. When $ \sigma $ is constant we prove one-sided uniqueness and approximation theorems under the assumption that $ a$ satisfies a one-sided Lipschitz condition.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Skorohod, Studies in the theory of random processes, Izdat. Kiev. Univ., Kiev, 1961; English transl., Addison-Wesley, Reading, Mass., 1965. MR 32 #3082a, b. MR 0185620 (32:3082b)
  • [2] A. F. Filippov, Differential equations with discontinuous right-hand side, Mat. Sb. 51 (93) (1960), 99-128; English transl., Amer. Math. Soc. Transl. (2) 42 (1964), 199-231. MR 22 #4846. MR 0114016 (22:4846)
  • [3] K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Die Grundlehren der math. Wissenschaften, Band 125, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 33 #8031. MR 0199891 (33:8031)
  • [4] K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 31 #5054. MR 0180824 (31:5054)
  • [5] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. MR 38 #1718. MR 0233396 (38:1718)
  • [6] Ju. V. Prohorov, Convergence of random processes and limit theorems, Teor. Verojatnost. i Primenen. 1 (1956), 157-214.
  • [7] A. V. Skorohod, Limit theorems for stochastic processes, Teor. Verojatnost. i Primenen. 1 (1956), 289-319 = Theor. Probability Appl. 1 (1956), 261-289. MR 18, 943. MR 0084897 (18:943c)
  • [8] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)
  • [9] D. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math. 22 (1969), 345-400. MR 0253426 (40:6641)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.75

Retrieve articles in all journals with MSC: 60.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0275532-6
Keywords: Stochastic integral of Itô, stochastic differential equations, stochastic integral equations, discontinuous coefficients
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society