Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



$ p$-solvable linear groups of finite order

Author: David L. Winter
Journal: Trans. Amer. Math. Soc. 157 (1971), 155-160
MSC: Primary 20.40
MathSciNet review: 0276345
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to prove the following result.

Theorem. Let $ p$ be an odd prime and let $ G$ be a finite $ p$-solvable group. Assume that $ G$ has a faithful representation of degree $ n$ over a field of characteristic zero or over a perfect field of characteristic $ p$. Let $ P$ be a Sylow $ p$-subgroup of $ G$ and let $ {O_p}(G)$ be the maximal normal $ p$-subgroup of $ G$. Then $ \vert P:{O_p}(G)\vert \leqq {p^{{\lambda _p}(n)}}$ where

\begin{displaymath}\begin{array}{*{20}{c}} {{\lambda _p}(n) = \sum\limits_{i = 0... ...ight]} \quad if\;p\;is\;not\;a\;Fermat\;prime.} \\ \end{array} \end{displaymath}

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.40

Retrieve articles in all journals with MSC: 20.40

Additional Information

Keywords: $ p$-solvable linear group, normal $ p$-subgroup
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society