Euclidean -space modulo an -plane of collapsible -complexes

Author:
Leslie C. Glaser

Journal:
Trans. Amer. Math. Soc. **157** (1971), 261-278

MSC:
Primary 54.78

DOI:
https://doi.org/10.1090/S0002-9947-1971-0276943-5

MathSciNet review:
0276943

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following general decomposition result is obtained: Suppose is a finite collapsible -complex topologically embedded as a subset of a separable metric space where, for some is homeomorphic to Euclidean -space . Then the Cartesian product of the quotient space with is topologically provided that and, for each simplex is homeomorphic, as pairs, to

**[1]**J. J. Andrews and M. L. Curtis,*𝑛-space modulo an arc*, Ann. of Math. (2)**75**(1962), 1–7. MR**0139153**, https://doi.org/10.2307/1970414**[2]**R. H. Bing,*The cartesian product of a certain nonmanifold and a line is 𝐸⁴*, Ann. of Math. (2)**70**(1959), 399–412. MR**0107228**, https://doi.org/10.2307/1970322**[3]**John L. Bryant,*Euclidean space modulo a cell*, Fund. Math.**63**(1968), 43–51. MR**0230298**, https://doi.org/10.4064/fm-63-1-43-51**[4]**-,*Euclidean -space modulo an -cell*(to appear).**[5]**J. L. Bryant and C. L. Seebeck III,*Locally nice embeddings of polyhedra*, Quart. J. Math. Oxford Ser. (2)**19**(1968), 257–274. MR**0234434**, https://doi.org/10.1093/qmath/19.1.257**[6]**J. L. Bryant and C. L. Seebeck III,*Locally nice embeddings in codimension three*, Bull. Amer. Math. Soc.**74**(1968), 378–380. MR**0221514**, https://doi.org/10.1090/S0002-9904-1968-11960-3**[7]**A. V. Černavskiĭ,*Locally homotopically unknotted embeddings of manifolds*, Dokl. Akad. Nauk SSSR**181**(1968), 290–293 (Russian). MR**0232395****[8]**A. V. Černavskiĭ,*Topological embeddings of manifolds*, Dokl. Akad. Nauk SSSR**187**(1969), 1247–1250 (Russian). MR**0259918****[9]**L. C. Glaser,*An elementary decomposition proof that the double suspension of a homotopy -cell is a topological -cell*, Illinios J. Math. (to appear).**[10]**-,*On suspensions of homology spheres*, Proc 1970 NUFFIC International Summer School on Manifolds (to appear).**[11]**David S. Gillman,*Unknotting 2-manifolds in 3-hyperplanes of 𝐸⁴*, Duke Math. J.**33**(1966), 229–245. MR**0189014****[12]**T. Homma,*Piecewise linear approximations of embeddings of manifolds*, Florida State University, Tallahassee, Fla., 1965 (mimeographed notes).**[13]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[14]**V. L. Klee Jr.,*Some topological properties of convex sets*, Trans. Amer. Math. Soc.**78**(1955), 30–45. MR**0069388**, https://doi.org/10.1090/S0002-9947-1955-0069388-5**[15]**C. Lacher,*Locally flat strings and half-strings*, Proc. Amer. Math. Soc.**18**(1967), 299–304. MR**0212805**, https://doi.org/10.1090/S0002-9939-1967-0212805-1**[16]**Richard T. Miller,*Approximating codimension- embeddings*, Notices Amer. Math. Soc.**17**(1970), 470. Abstract #70 T-G47.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1971-0276943-5

Keywords:
Euclidean space,
-cell,
collapsible complex,
separable metric space,
quotient space,
Cartesian product,
a map bounded on the factor,
-flat,
-fold suspension,
pseudo-isotopy

Article copyright:
© Copyright 1971
American Mathematical Society