Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Locally flat imbeddings of topological manifolds in codimension three.


Author: Glenn P. Weller
Journal: Trans. Amer. Math. Soc. 157 (1971), 161-178
MSC: Primary 57.01
MathSciNet review: 0276981
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents an imbedding theorem for one topological manifold $ {M^n}$ in another topological manifold $ {Q^q}$, provided that the codimension $ (q - n)$ is at least three. The result holds even if the manifolds are of the recently discovered non-piecewise-linear type. Denote the boundaries of $ M$ and $ Q$ by $ \dot M$ and $ \dot Q$ respectively. Suppose that $ M$ is $ 2n - q$ connected and $ Q$ is $ 2n - q + 1$ connected. It is then proved that any map $ f:(M,\dot M) \to (Q,\dot Q)$ such that $ f\vert\dot M$ is a locally flat imbedding is homotopic relative to $ \dot M$ to a proper locally flat imbedding $ g:M \to Q$. It is also shown that if $ M$ is closed and $ 2n - q + 1$ connected and $ Q$ is $ 2n - q + 2$ connected, then any two homotopic locally flat imbeddings are locally flatly concordant.


References [Enhancements On Off] (What's this?)

  • [1] Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 0133812
  • [2] Jerome Dancis, Approximations and isotopies in the trivial range, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 171–187. MR 0224097
  • [3] Jerome Dancis, Some nice embeddings in the trivial range, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 159–170. MR 0220265
  • [4] André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82 (French). MR 0145538
  • [5] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
  • [6] J. F. P. Hudson, Piecewise linear topology. Vol. I, The University of Chicago, Chicago, Ill., 1967 (mimeographed).
  • [7] M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. (2) 82 (1965), 1–14. MR 0182978
  • [8] R. C. Kirby and L. C. Siebenmann, For manifolds the Hauptvermutung and the triangulation conjecture are false, Notices Amer. Math. Soc. 16 (1969), 695. Abstract #69T-G80.
  • [9] J. A. Lees, An engulfing theorem for topological manifolds, Rice University, Houston, Tex., 1968 (mimeographed).
  • [10] J. Alexander Lees, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 89 (1969), 1–13. MR 0238287
  • [11] Richard T. Miller, Close isotopies on piecewise-linear manifolds, Trans. Amer. Math. Soc. 151 (1970), 597–628. MR 0266220, 10.1090/S0002-9947-1970-0266220-X
  • [12] James R. Munkres, Elementary differential topology, Lectures given at Massachusetts Institute of Technology, Fall, vol. 1961, Princeton University Press, Princeton, N.J., 1966. MR 0198479
  • [13] M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555–571. MR 0203708
  • [14] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
  • [15] R. G. Swan, The theory of sheaves, Univ. of Chicago Press, Chicago, Ill., 1964.
  • [16] G. P. Weller, Locally flat imbeddings of topological manifolds, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1968.
  • [17] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501–526. MR 0160218

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.01

Retrieve articles in all journals with MSC: 57.01


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0276981-2
Keywords: Topological manifold, locally flat imbedding, codimension three, concordant imbeddings, engulfing, piecewise-linear manifold
Article copyright: © Copyright 1971 American Mathematical Society